




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届南阳市重点中学数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.2.当实数,m变化时,的最大值是()A.3 B.4C.5 D.63.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行4.曲线在点处的切线方程为()A. B.C. D.5.若,则下列结论不正确的是()A. B.C. D.6.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.567.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.9.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题10.已知,则下列不等式一定成立的是()A B.C. D.11.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.1612.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆锥的轴截面是顶角为的等腰三角形,且圆锥的侧面积为,则该圆锥的体积为______.14.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______15.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.16.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,直线过且与交于两点,过点作直线的平行线交于点(1)求证:为定值,并求点的轨迹的方程;(2)设动直线与相切于点,且与直线交于点,在轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出的坐标;若不存在,说明理由18.(12分)如图,四棱柱的底面为正方形,平面,,,点在上,且.(1)求证:;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.19.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?20.(12分)已知圆,直线,直线l与圆C相交于P,Q两点(1)求的最小值;(2)当的面积最大时,求直线l的方程21.(12分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF22.(10分)已知等比数列的公比为,前项和为,,,(1)求(2)在平面直角坐标系中,设点,直线的斜率为,且,求数列的通项公式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】先求出,再利用向量的线性运算和数量积计算求解.【题目详解】解:由题得,,故选:B2、D【解题分析】根据点到直线的距离公式可知可以表示单位圆上点到直线的距离,利用圆的性质结合图形即得.【题目详解】由题可知,可以表示单位圆上点到直线的距离,设,因直线,即表示恒过定点,根据圆的性质可得.故选:D.3、D【解题分析】根据平面与平面平行的判定定理可判断.【题目详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.4、A【解题分析】利用切点和斜率求得切线方程.【题目详解】由,有曲线在点处的切线方程为,整理为故选:A5、B【解题分析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【题目详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【题目点拨】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.6、A【解题分析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【题目详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.7、C【解题分析】化简复数,根据复数的几何意义,即可求解.【题目详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.8、B【解题分析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【题目详解】解:,由题意可得或即或,解得或故选:B.9、D【解题分析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.10、B【解题分析】运用不等式的性质及举反例的方法可求解.【题目详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B11、A【解题分析】由抛物线的性质:过焦点的弦长公式计算可得.【题目详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.12、B【解题分析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【题目详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设圆锥的高为,可得出圆锥的母线长为,以及圆锥的底面半径为,利用圆锥的侧面积公式求出的值,再利用锥体的体积公式可求得结果.【题目详解】设圆锥的高为,由于圆锥的轴截面是顶角为的等腰三角形,则轴截面三角形的底角为,故该圆锥的母线长为,底面半径为,圆锥的侧面积为,可得,因此,该圆锥的体积为.故答案为:.14、【解题分析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【题目详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:15、##【解题分析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【题目详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:16、8【解题分析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【题目详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,()(2)存在,【解题分析】(1)根据题意和椭圆的定义可知点的轨迹是以A,为焦点的椭圆,且,,进而得出椭圆标准方程;(2)设,联立动直线方程和椭圆方程并消元得出关于的一元二次方程,根据根的判别式可得点P和Q的坐标,结合,利用平面向量的坐标表示列出方程组,即可解出点M的坐标.【小问1详解】圆A:,∵,∴,又,∴∴,∴,故∴点的轨迹是以A,为焦点的椭圆,且,∴,故:();【小问2详解】由,得∴,故,设,则,,故,,由可得:由对,恒成立∴故存在使得以为直径的圆恒过定点18、(1)证明见解析(2)(3)【解题分析】(1)以为原点,所在的直线为轴的正方向建立空间直角坐标系,求出平面的一个法向量可得,即平面,再由线面垂直的性质可得答案;(2)设直线与平面所成角的为,可得答案;(3)由二面角的向量求法可得答案.【小问1详解】以为原点,所在的直线为轴的正方向建立空间直角坐标系,则,,,,,所以,,,设平面的一个法向量为,所以,即,令,则,所以,所以,所以平面,平面,所以.【小问2详解】,所以,由(1)平面的一个法向量为,设直线与平面所成角的为,所以直线与平面所成角的正弦值.【小问3详解】由已知为平面的一个法向量,且,由(1)平面的一个法向量为,所以,由图可得平面与平面夹角的余弦值为.19、(1)答案见解析;(2)应选择.【解题分析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370.20.04【小问2详解】记为当时购买零件所需费用,,,,,元,记为当时购买零件所需费用,,,,元,显然,所以应选择.20、(1)4;(2)或.【解题分析】(1)过定点D(4,2),当CD⊥l时,|PQ|最小;(2),当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,圆心到直线l的距离,据此即可求出m.【小问1详解】由,得,由,∴直线l过定点D(4,2),∵,∴在圆C内部,∴直线和l与圆C相交,当CD⊥l时,|PQ|最小,;【小问2详解】∵,∴当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,故圆心到直线l的距离,∴,解得,∴此时l的方程为:或.21、(1)(2)见解析.【解题分析】(1)在中,,求得,由此能求出四棱锥的体积;(2)由平面,证得和,由此利用线面垂直的判定定理,即可证得平面.试题解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部队安全培训学习记录课件
- 部队军事课件蓝地图
- 河北省保定市高阳县2024-2025学年五年级上学期期末数学试题
- 2024-2025学年云南省大理州统编版五年级下册期末考试语文试卷
- 48m槽型梁建筑施工组织设计及对策
- 部门安全规章制度培训课件
- 部门安全培训感受及收获课件
- 边境渔业安全培训课件
- 车险理赔防诉讼课件
- 基于区块链技术的变频器故障数据共享中的隐私保护与溯源机制设计
- 植物灰分的测定
- 三年级美术上册《魔幻颜色》课件
- 部编版一年级上册语文全册优秀课件
- 《横》书法教学课件
- 工程项目进度管理-课件
- 文件外发申请单
- 土壤肥料全套课件
- 历史选择性必修1 国家制度与社会治理(思考点学思之窗问题探究)参考答案
- 中国铁路总公司《铁路技术管理规程》(高速铁路部分)2014年7月
- 中国医院质量安全管理 第2-29部分:患者服务临床营养 T∕CHAS 10-2-29-2020
- 中职《机械基础》全套课件(完整版)
评论
0/150
提交评论