福建省泉州三中2024届数学高二上期末检测模拟试题含解析_第1页
福建省泉州三中2024届数学高二上期末检测模拟试题含解析_第2页
福建省泉州三中2024届数学高二上期末检测模拟试题含解析_第3页
福建省泉州三中2024届数学高二上期末检测模拟试题含解析_第4页
福建省泉州三中2024届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州三中2024届数学高二上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆和圆的位置关系是()A.内含 B.内切C.相交 D.外离2.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.3.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和4.已知函数的定义域为,若,则()A. B.C. D.5.是双曲线:上一点,已知,则的值()A. B.C.或 D.6.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A. B.C. D.7.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有()种A.9 B.36C.54 D.1088.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.9.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.10.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.11.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.12.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上二、填空题:本题共4小题,每小题5分,共20分。13.若复数z=为纯虚数(),则|z|=_____.14.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件15.抛物线的焦点坐标为__________16.已知,且,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,(1)求B的大小;(2)求cosA+cosC的最大值18.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.19.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值20.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值22.(10分)球形物体天然萌,某食品厂沿袭老字号传统,独家制造并使用球形玻璃瓶用于售卖酸梅汤,其中瓶子的制造成本c(分)与瓶子的半径r(cm)的平方成正比,且当cm时,制造成本c为3.2π分,已知每出售1mL的酸梅汤,可获得0.2分,且制作的瓶子的最大半径为6cm(1)写出每瓶酸梅汤的利润y与r的关系式(提示:);(2)瓶子半径多大时,每瓶酸梅汤的利润最大,最大为多少?(结果用含π的式子表示)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】根据两圆圆心的距离与两圆半径和差的大小关系即可判断.【题目详解】解:因为圆的圆心为,半径为,圆的圆心为,半径为,所以两圆圆心的距离为,因为,即,所以圆和圆的位置关系是相交,故选:C.2、D【解题分析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质3、C【解题分析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【题目详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C4、D【解题分析】利用导数的定义可求得的值.【题目详解】由导数的定义可得.故选:D.5、B【解题分析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【题目详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B6、A【解题分析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【题目详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A7、C【解题分析】根据给定条件利用排列并结合排除法列式计算作答.【题目详解】从含有3名男教师和2名女教师的5名教师中任选3名教师,派到3个不同的乡村支教,不同的选派方案有种,选出3名教师全是男教师的不同的选派方案有种,所以3名教师中男女都有的不同的选派方案共有种故选:C8、C【解题分析】根据向量线性运算法则计算即可.【题目详解】故选:C9、B【解题分析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【题目详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B10、C【解题分析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【题目详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【题目点拨】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.11、B【解题分析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【题目详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B12、B【解题分析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【题目详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【题目点拨】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】利用复数z=为纯虚数求出a,即可求出|z|.【题目详解】z=.由纯虚数的定义知,,解得.所以.故|z|=.故答案为:.14、(1)(2)(3)【解题分析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【题目详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).15、【解题分析】化成标准形式,结合焦点定义即可求解.【题目详解】由,得,故抛物线的焦点坐标为故答案为:16、2【解题分析】由共线向量得,解方程即可.【题目详解】因为,所以,解得.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解题分析】(1)由余弦定理及题设得;(2)由(1)知当时,取得最大值试题解析:(1)由余弦定理及题设得,又∵,∴;(2)由(1)知,,因为,所以当时,取得最大值考点:1、解三角形;2、函数的最值.18、(1)证明见解析(2)【解题分析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立空间直角坐标系.则,,,所以,由已知可知平面ABCD的一个法向量设平面的一个法向量为,由,即,得,令,则,所以,由图形可得二面角为锐角,所以二面角的余弦值为.19、(1)证明见解析;(2)【解题分析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(1)证明见解析;(2).【解题分析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.21、(1)(2)【解题分析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【题目详解】解:(1)因为bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【题目点拨】本题主要考查了利用正、余弦定理及三角形的面积公式解三角形问题,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论