




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市禄劝县一中2024届高二上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;2.椭圆离心率是()A. B.C. D.3.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.4.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若动点在方程所表示的曲线上,则以下结论正确的是()①曲线关于原点成中心对称图形;②动点到坐标原点的距离的取值范围为;③动点与点的最小距离为;④动点与点的连线斜率的取值范围是.A.①② B.①②③C.③④ D.①②④6.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°7.在正方体中,分别为的中点,为侧面的中心,则异面直线与所成角的余弦值为()A. B.C. D.8.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.119.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.10.已知向量与平行,则()A. B.C. D.11.在等比数列中,,公比,则()A. B.6C. D.212.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.12二、填空题:本题共4小题,每小题5分,共20分。13.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______14.已知双曲线的左焦点为F,点P在双曲线右支上,若线段PF的中点在以原点O为圆心,为半径的圆上,且直线PF的斜率为,则该双曲线的离心率是______15.若,,都为正实数,,且,,成等比数列,则的最小值为______16.已知实数满足,则的取值范围是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间18.(12分)设数列是公比为q的等比数列,其前n项和为(1)若,,求数列的前n项和;(2)若,,成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得,,成等差数列;(3)若存在正整数,使得数列,,…,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,19.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.20.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和21.(12分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值22.(10分)已知:,有,:方程表示经过第二、三象限的抛物线,.(1)若是真命题,求实数的取值范围;(2)若“”是假命题,“”是真命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据平均数、标准差、中位数及众数的概念即得.【题目详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.2、C【解题分析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【题目详解】解:由得,所以,则,所以椭圆的离心率,故选:C.3、C【解题分析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【题目详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.4、A【解题分析】利用充分条件和必要条件的定义判断.【题目详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A5、A【解题分析】将原方程等价变形为,将方程中的换为,换为,方程不变,可判断①;利用两点间的距离公式,结合二次函数知识可判断②和③;取特殊点可判断④.【题目详解】因为等价于,即,对于①,将方程中的换为,换为,方程不变,所以曲线关于原点成中心对称图形,故①正确;对于②,设,则动点到坐标原点的距离,因为,所以,故②正确;对于③,设,动点与点的距离为,因为函数在上递减,所以当时,函数取得最小值,从而取得最小值,故③不正确;对于④,当时,因为,所以,故④不正确.综上所述:结论正确的是:①②.故选:A6、A【解题分析】求出直线的斜率,由斜率得倾斜角【题目详解】由题意直线斜率为,所以倾斜角为故选:A7、A【解题分析】建立空间直角坐标系,用空间向量求解异面直线夹角的余弦值.【题目详解】如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,所在直线为z轴建立空间直角坐标系,设正方体棱长为2,则,,,,则,,设异面直线与所成角为(),则.故选:A8、C【解题分析】利用递推关系,结合取值,求得即可.【题目详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.9、A【解题分析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【题目详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【题目点拨】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题10、D【解题分析】根据两向量平行可求得、的值,即可得出合适的选项.【题目详解】由已知,解得,,则.故选:D.11、D【解题分析】利用等比数列的通项公式求解【题目详解】由等比数列的通项公式得:.故选:D12、C【解题分析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【题目详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解题分析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【题目详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:14、3【解题分析】如图利用条件可得,,然后利用双曲线的定义可得,即求.【题目详解】如图设双曲线的右焦点为,线段PF的中点为M,连接,则,又直线PF的斜率为,∴在直角三角形中,,∴,∴,即,∴.故答案:3.15、##【解题分析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【题目详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.16、【解题分析】去绝对值分别列出每个象限解析式,数形结合利用距离求解范围.【题目详解】当,表示椭圆第一象限部分;当,表示双曲线第四象限部分;当,表示双曲线第二象限部分;当,不表示任何图形;以及两点,作出大致图象如图:曲线上的点到的距离为,根据双曲线方程可得第二四象限双曲线渐近线方程都是,与距离为2,曲线二四象限上的点到的距离为小于且无限接近2,考虑曲线第一象限的任意点设为到的距离,当时取等号,所以,则的取值范围是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)在内单调递减,在内单调递增【解题分析】(1)由题意求导可得,代入可得(1),从而求,进而求切线方程;(2)的定义域为,,从而求单调性【题目详解】解:(1)因为在处切线垂直于,所以(2)因为的定义域为当时,当时,在内单调递减,在内单调递增【题目点拨】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.18、(1)(2),证明见解析.(3)不存在,【解题分析】(1)数列为首项为公差为的等差数列,利用等差数列的求和公式即可得出结果;(2),,成等差数列,则+=2,根据等比数列求和公式计算可解得,进而计算可得,即可判断结果;(3)由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,解方程组可得无解,则所有数对所构成的集合为.【小问1详解】,,数列是公比为q的等比数列,,数列为,数列为首项为公差为的等差数列,数列的前n项和.【小问2详解】,,成等差数列,+=2,当时,+=,2,不符题意舍去,当时,.,即,,,(舍)或即,存在互不相同的正整数,使得,,成等差数列,,,.【小问3详解】由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,,即,解得:方程组无解.即符合条件的不存在,所有数对所构成的集合为.19、(1);(2)证明见解析.【解题分析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【题目详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【题目点拨】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.20、(1)(2)【解题分析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.21、(1)证明见解析;(2).【解题分析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用直线的方向向量,平面的法向量,计算线面角的正弦值.【题目详解】(1)以为原点建立如图所示空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目竣工验收综合评估与问题整改方案
- 车间生产调度系统优化方案
- 职业资格证书模板合集
- 五年级奥数专题模型练习集锦
- 市政道路施工专项安全方案
- 精准棉花采摘机器人企业制定与实施新质生产力项目商业计划书
- 粽子手工坊行业深度调研及发展项目商业计划书
- 中小学学科竞赛真题合集及解析
- 红枣山楂瘦身酒行业跨境出海项目商业计划书
- 煤炭清洁利用技术创新创业项目商业计划书
- 眼内炎的预防控制措施
- 2025年度化肥生产设备租赁与维护合同书
- 2025年上半年泸州市纳溪区总工会招考社会化专职工会工作者易考易错模拟试题(共500题)试卷后附参考答案
- 广东学校安全条例课件
- 毕氏族谱完整版本
- 法院冻结所有账户执行异议申请书
- 【MOOC】地理空间数据库-战略支援部队信息工程大学 中国大学慕课MOOC答案
- 中华民族共同体概论教案第十二讲-民族危亡与中华民族意识觉醒
- ICU患者的护理常规
- 六年级语文上册第三单元习作-让生活更美好课件
- 《江城子·乙卯正月二十日夜记梦》课件 -2024-2025学年统编版高中语文选择性必修上册
评论
0/150
提交评论