




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市市闲林职业中学2021年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若是R上的偶函数,且在[0,+∞)上是增函数,则下列各式成立的是:(
)
参考答案:B略2.用“辗转相除法”求得和的最大公约数是(
)A.
B.
C.
D.
参考答案:D3.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有1件一等品 B.至少有一件一等品C.至多有一件一等品 D.都不是一等品参考答案:C【分析】将3件一等品编号为1,2,3,2件二等品的编号为4,5,列举出从中任取2件的所有基本事件的总数,分别计算选项的概率,即可得到答案.【详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中明确古典概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.“”是“方程表示椭圆”的(
)ks5uA.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B5.不等式ax2+bx+2>0的解集是,则a-b等于A.-4
B.14
C.-10
D.10参考答案:C6.若函数的图象与的图象都关于直线对称,则与的值分别为(
)A.
B.
C.
D.参考答案:D7.已知点A(1,0),B(-1,0)。动点M满足|MA|-|MB|=2,则点M的轨迹方程是(
)A. B.C. D.参考答案:C8.如果点(5,b)在两条平行线6x-8y+1=0,3x-4y+5=0之间,则b应取的整数值为(
)
A.-4
B.4.
C.-5
D.5.参考答案:B略9.已知等差数列的前项和,满足,则=()A.-2015 B.-2014 C.-2013 D.-2012参考答案:D10.下列命题中,正确结论有()(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等(3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行A.1个
B.2个
C.3个
D.4个
参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知数列{an}满足a1=2,an+1﹣an+1=0(n∈N+),则此数列的通项an=.参考答案:3﹣n【考点】数列递推式.【分析】利用等差数列的通项公式即可得出.【解答】解:∵an+1﹣an+1=0(n∈N+),即an+1﹣an=﹣1,∴数列{an}是等差数列,公差为﹣1.∴an=2﹣(n﹣1)=3﹣n.故答案为:3﹣n.12.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为4:5:6,则这一行是第__________行(填行数).参考答案:98【分析】通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【点睛】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.13.如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第10行第2个数(从左往右数)为
.参考答案:14.椭圆C:+=1的左右焦点为F1,F2,M为椭圆C上的动点,则+的最小值为.参考答案:【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由+==,MF1?MF2的最大值为a2=25,能求出+的最小值.【解答】解:∵椭圆C:+=1的左右焦点为F1,F2,M为椭圆C上的动点,∴+==,∵MF1?MF2的最大值为a2=25,∴+的最小值dmin==.故答案为:.【点评】本题考查代数式的最小值的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.15.对?x∈R,kx2﹣kx﹣1<0是真命题,则k的取值范围是.参考答案:﹣4<k≤0【考点】全称命题;一元二次不等式的应用.【专题】计算题;分类讨论;转化思想.【分析】对k=0与k<0,k>0,分别利用?x∈R,kx2﹣kx﹣1<0是真命题,求出k的范围.【解答】解:当k=o时,对?x∈R,kx2﹣kx﹣1<0,﹣1<0即是真命题,成立.当k<0时,对?x∈R,kx2﹣kx﹣1<0是真命题,必有△=(﹣k)2+4k<0,解得,﹣4<k<0,当k>0时,对?x∈R,kx2﹣kx﹣1<0是真命题,显然不成立.综上,﹣4<k≤0.故答案为:﹣4<k≤0【点评】本题考查不等式的解法,恒成立问题,考查转化思想,分类讨论.16.做一个容积为108的正方形底的长方体无盖水箱,当它的高为
▲
时最省料。参考答案:略17.在平面直角坐标系中,已知圆(为参数)和直线(为参数),则直线与圆相交所得的弦长等于
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.求值:(1)[(-1+i)·i100+()5]2017-()20(2)[3tanx+sinx-2x3+]dx.参考答案:【分析】(1)利用复数的运算法则、周期性化简即可得出.(2)y=3tanx+sinx﹣2x3是奇函数,可得=dx,即可得出.【解答】解:(1)∵i4=1,∴i100=(i4)25=1,∵==﹣i,∴(﹣i)5=﹣i,(﹣1)2017=﹣1.==﹣1,∴=﹣1.=﹣1+1=0.(2)∵y=3tanx+sinx﹣2x3是奇函数,∴=dx==+2.19.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.(1)求证:平面PAC⊥平面PBC;(6分)(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.(6分)参考答案:(1)证明由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.又PA∩AC=A,PA?平面PAC,AC?平面PAC,所以BC⊥平面PAC.因为BC?平面PBC,所以平面PBC⊥平面PAC.(5分)(2)解方法一过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.因为AB=2,AC=1,所以BC=.因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故C=(,0,0),C=(0,1,1).设平面BCP的法向量为n1=(x,y,z),高考资源网则,所以不妨令y=1,则n1=(0,1,-1).因为A=(0,0,1),A=(,-1,0),设平面ABP的法向量为n2=(x,y,z),则所以不妨令x=1,则于是所以由题意可知二面角C-PB-A的余弦值为.(10分)方法二过C作CM⊥AB于M,因为PA⊥平面ABC,CM?平面ABC,所以PA⊥CM,又PA∩AB=A,故CM⊥平面PAB.过M作MN⊥PB于N,连接NC,由三垂线定理得CN⊥PB,所以∠CNM为二面角C-PB-A的平面角.在Rt△ABC中,由AB=2,AC=1,得BC=,CM=,BM=,在R t△PAB中,由AB=2,PA=1,得PB=.因为Rt△BNM∽Rt△BAP,所以=,故MN=.又在Rt△CNM中,CN=,故cos∠CNM=.所以二面角C-PB-A的余弦值为.
20.已知数列的前项和与满足:成等比数列,且,求数列的前项和参考答案:解析:由题意:
21.已知椭圆与双曲线的焦点相同,且它们的离心率之和等于.(Ⅰ)求椭圆方程;(Ⅱ)过椭圆内一点M(1,1)作一条弦AB,使该弦被点M平分,求弦AB所在直线方程.参考答案:【考点】双曲线的简单性质.【专题】计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出椭圆的焦点和离心率,进而得到双曲线的离心率和焦点,再由椭圆的a,b,c的关系,即可得到椭圆方程;(Ⅱ)设出弦AB的端点的坐标,代入椭圆方程和中点坐标公式,运用作差,结合平方差公式和斜率公式,由点斜式方程即可得到直线AB的方程.【解答】解:(Ⅰ)双曲线的焦点为(0,4),(0,﹣4),离心率为=2,则椭圆的方程为+=1(a>b>0),且离心率e==﹣2=,由于c=4,则a=5,b==3,则椭圆方程为+=1;(Ⅱ)设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=2,+=1,+=1,两式相减可得,+=0,即有kAB==﹣,则直线AB所在方程为y﹣1=﹣(x﹣1),由于M在椭圆内,则弦AB存在.则所求直线AB的方程为25x+9y﹣34=0.【点评】本题考查椭圆和双曲线的方程和性质,考查离心率的求法,考查中点坐标公式和点差法的运用,考查运算能力,属于中档题.22.(本小题13分)第(Ⅰ)小题5分,第(Ⅱ)题8分(Ⅰ)已知直线过点且与直线垂直,求直线的方程.(Ⅱ)已知直线经过直线与直线的交点,且平行于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品添加剂安全性评估与合理使用在调味品行业的应用报告
- 小学教育信息化建设反思试题及答案
- 教育园区建设对2025年社会稳定风险评估与风险监测报告
- 机械装备制造业智能化升级与产品质量提升研究报告
- 教师教育教学改进表现的试题及答案
- 小学教师反思与校本培训的重要性试题及答案
- 山东石油化工学院《工程管理类软件应用含技术》2023-2024学年第一学期期末试卷
- 工业互联网平台安全升级之道:2025年漏洞扫描技术前瞻报告
- 曲阜远东职业技术学院《食品分析含实验》2023-2024学年第二学期期末试卷
- 市政公用工程法律法规试题及答案
- 设备维护工程师简历
- 2023版押品考试题库必考点含答案
- 挖孔桩基施工方案(水磨钻)
- 变电检修技能考试计算
- 国际经济法学(湘潭大学)智慧树知到答案章节测试2023年
- 以案说德发言四篇
- 大气污染控制工程课后题答案解析
- 临床试验伦理委员会伦理审查不同意见沟通的标准操作规程
- 梅毒诊疗指南(2023年)
- 高中物理3-3热学练习题(含答案)
- DB32-T 3916-2020建筑地基基础检测规程-(高清现行)
评论
0/150
提交评论