




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北黄冈数学高二上期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.2.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.143.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.4.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为5.已知等差数列中的、是函数的两个不同的极值点,则的值为()A. B.1C.2 D.36.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.13628.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.9.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.10.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.11.已知向量,若,则()A. B.5C.4 D.12.已知一个乒乓球从米高的高度自由落下,每次落下后反弹的高度是原来高度的倍,则当它第8次着地时,经过的总路程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为直线上的动点,为函数图象上的动点,则的最小值为______14.如图的形状出现存南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最一上层有1个球,第二层有3个球,第三层有6个球……,设从上至下各层球数构成一个数列则___________.(填数字)15.若与直线垂直,那么__________16.若,,,,与,,,,,,均为等差数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在公差不为0的等差数列中,,且构成等比数列的前三项(1)求数列,的通项公式;(2)设数列___________,求数列的前项和请在①;②;③这三个条件中选择一个,补充在上面的横线上,并完成解答18.(12分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.19.(12分)从甲、乙两名学生中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射靶10次,每次命中的环数如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你认为应该选哪名学生参加比赛?为什么?20.(12分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)试讨论函数的单调性.22.(10分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【题目详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A2、B【解题分析】画出约束条件的可行域,利用目标函数的几何意义即可求解【题目详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B3、B【解题分析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【题目详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.4、D【解题分析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【题目详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D5、C【解题分析】对求导,由题设及根与系数关系可得,再根据等差中项的性质求,最后应用对数运算求值即可.【题目详解】由题设,,由、是的两个不同的极值点,所以,又是等差数列,所以,即,故.故选:C6、D【解题分析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【题目详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【题目点拨】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.7、B【解题分析】观察前4项可得,从而可求得结果【题目详解】由题意可得,……,观察规律可得,所以,故选:B8、D【解题分析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【题目详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D9、B【解题分析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【题目详解】解:因为,,所以所以,因为,所以,所以,故选:B10、C【解题分析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【题目详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C11、B【解题分析】根据向量垂直列方程,化简求得.【题目详解】由于,所以.故选:B12、C【解题分析】根据等比数列的求和公式求解即可.【题目详解】从第1次着地到第2次着地经过的路程为,第2次着地到第3次着地经过的路程为,组成以为首项,公比为的等比数列,所以第1次着地到第8次着地经过的路程为,所以经过的总路程是.故答案为:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【题目详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:14、【解题分析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到,即可得解【题目详解】解:由题意可知,,,,,,故,所以,故答案为:15、【解题分析】由两条直线垂直知,得16、##【解题分析】由题意利用等差数列的定义和通项公式,求得要求式子的值【题目详解】设等差数列,,,,的公差为,等差数列,,,,,,的公差为,则有,且,所以,则,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解题分析】(1)设的公差为,根据等比中项的性质得到,即可求,从而求出的通项公式,所以,即可求出等比数列的公比,从而求出的通项公式;(2)若选①:则,利用裂项相消法求和即可;若选②:则,根据等比数列求和公式计算可得;若选③:则利用分组求和法求和即可;【小问1详解】解:设的公差为,成等比数列,,,解得或,,,即,,的公比,,【小问2详解】解:若选①:则,;若选②:则,;若选③:则,.18、(1)证明见解析(2)【解题分析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩形,则E为的中点.因为D是的中点,所以,又平面平面,所以平面;【小问2详解】因为底面是等边三角形,D是的中点,所以,由直棱柱的性质可知平面平面,平面平面,面,所以平面,取的中点F,连接,则两两垂直,故以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,设,则,从而,设平面的法向量为,则,令x=2,得,同理平面的一个法向量为,则cosm由图可知二面角的平面角为锐角,所以二面角B1-AC-C1的余弦值为.19、(1);;;;(2)选乙参加比赛,理由见解析.【解题分析】(1)利用平均数和方程公式求解;(2)利用(1)的结果作出判断.【题目详解】(1)由数据得:;;(2)由(1)可知,甲乙两人平均成绩一样,乙的方差小于甲的方差,说明乙的成绩更稳定;应该选乙参加比赛.20、(1)(2)【解题分析】(1)根据不等式的解答求得,当时,求得,结合集合并集的运算,即可求解;(2)由题意得到是的真子集,根据集合间的包含关系,列出不等式组,即可求解.【小问1详解】解:由,解得,即,当时,可得,所以.【小问2详解】解:由集合,因为,且是成立的必要不充分条件,是的真子集,所以且等号不能同时成立,解得,其中当和是满足题意,故实数的取值范围是.21、(1)(2)详见解析.【解题分析】(1)由,求导,得到,写出切线方程;(2)求导,再分,,讨论求解.【小问1详解】解:因为,所以,则,所以,所以曲线在点处
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务预算制定及监控分析模板
- 康复患者的病例分析
- 偏瘫病人的康复指导
- 扩心病的药物治疗
- 药剂科各岗位职责
- 内分泌护理创新
- 尿失禁尿潴留的护理
- 临床护理实践创新案例
- 培训课件开发项目背景
- 科学使用手机课件
- 医疗机构睡眠门诊建设和管理专家共识(2025版)解读 3
- 中山市好小区好房子建设指引(试行)
- 2025秋人教版(2024)二年级上册数学教学计划
- 2025年部编版新教材语文八年级上册教学计划(含进度表)
- 高中生物开学第一课课件 高一生物(人教版)必修1
- 2024年船舶分段制造与装配分包劳务合同
- 安徽课件完整版本
- 房建监理平行检查记录表格模板(参考版)
- 计算机操作系统(第四版)-汤小丹-课后习题答案
- 12生物分子网络ppt课件
- 手术室护士长工作手册-精品完整版
评论
0/150
提交评论