




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖南省邵阳市新宁县马头桥乡中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC1与平面AB1C1所成的角为(
)A.
B.
C.
D.参考答案:A2.设,,,则有(
)A.
B.
C.
D.参考答案:B略3.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时的平均价格为3元,下面给出了四个图象,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是()A. B. C. D.参考答案:C【考点】函数的图象.【分析】根据已知中,实线表示即时曲线y=f(x),虚线表示平均价格曲线y=g(x),根据实际中即时价格升高时,平均价格也随之升高,价格降低时平均价格也随之减小的原则,对四个答案进行分析即可得到结论.【解答】解:刚开始交易时,即时价格和平均价格应该相等,开始交易后,平均价格应该跟随即时价格变动,即时价格与平均价格同增同减,故只有C符合,故选:C.4.甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用甲、乙表示,则下列结论正确的是()参考答案:A略5.已知满足对任意,都有成立,那么的取值范围是(
)A.
B.
C.(1,2)
D.参考答案:A6.设集合,则实数a的取值范围是
A.
B.
C.(-1,+∞)
D.(-∞,-1)参考答案:
解析:画出数轴,由图可知,选B.7.已知,则的值为(
)A. B. C. D.参考答案:C【分析】根据辅助角公式即可。【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题。8.已知函数.则函数在区间上的最大值和最小值分别是
(
)A.最大值为,最小值为 B. 最大值为,最小值为C.最大值为,最小值为 D. 最大值为,最小值为参考答案:A9.如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是()A.①③
B.②
C.②④
D.①②④参考答案:A10.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∪?RB=()A.{x|2<x≤5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x≥5}参考答案:A【考点】交、并、补集的混合运算.【分析】由题意和补集的运算求出?RB,由并集的运算求出A∪?RB.【解答】解:由B={x|x<3或x>5}得?RB={x|3≤x≤5},又集合A={x|2<x<4},所以A∪?RB={x|2<x≤5},故选A.二、填空题:本大题共7小题,每小题4分,共28分11.已知,则cos(30°﹣2α)的值为.参考答案:【考点】GT:二倍角的余弦;GP:两角和与差的余弦函数.【分析】利用诱导公式求得sin(15°﹣α)=,再利用二倍角的余弦公式可得cos(30°﹣2α)=1﹣2sin2(15°﹣α),运算求得结果.【解答】解:∵已知,∴sin(15°﹣α)=,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=,故答案为.【点评】本题主要考查诱导公式,二倍角的余弦公式的应用,属于中档题.12.对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3.定义在R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},则A中所有元素之和为.参考答案:44【考点】函数的最值及其几何意义.【分析】对x分类讨论,利用[x]的意义,即可得出函数f(x)的值域A,进而A中所有元素之和.【解答】解:∵[x]表示不超过x的最大整数,A={y|y=f(x),0<x<1},当0<x<时,0<2x<,0<4x<,0<8x<1,f(x)=[2x]+[4x]+[8x]=0+0+0=0;当≤x<时,≤2x<,≤4x<1,1≤8x<2,f(x)=[2x]+[4x]+[8x]=0+0+1=1;当≤x<时,≤2x<,1≤4x<,2≤8x<3,f(x)=[2x]+[4x]+[8x]=0+1=2=3;当≤x<时,≤2x<1,≤4x<2,3≤8x<4,f(x)=[2x]+[4x]+[8x]=0+1+3=4;当≤x<时,1≤2x<,2≤4x<,4≤8x<5,f(x)=[2x]+[4x]+[8x]=1+2+4=7;当≤x<时,≤2x<,≤4x<3,5≤8x<6,f(x)=[2x]+[4x]+[8x]=1+2+5=8;当≤x<时,≤2x<,3≤4x<,6≤8x<7,f(x)=[2x]+[4x]+[8x]=1+3+6=10;当≤x<1时,≤2x<2,≤4x<4,7≤8x<8,f(x)=[2x]+[4x]+[8x]=1+3+7=11;∴A={0,1,3,4,7,8,10,11}.∴A中所有元素之和为0+1+3+4+7+8+10+11=44.故答案为:44.13.函数满足,,且对任意正整数n,都有,则的值为
.参考答案:
解析:记,
所以
所以
故14.计算lg25+lg2lg5+lg2=.参考答案:1【考点】对数的运算性质.【专题】函数的性质及应用.【分析】根据对数的运算法则进行计算即可得到结论.【解答】解:lg25+lg2lg5+lg2=(lg5+lg2)lg5+lg2=lg5+lg2=lg10=1,故答案为:1【点评】本题主要考查对数的基本运算,利用对数的运算法则以及lg2+lg5=1是解决本题的关键.15.(本小题10分)求函数的单调增区间。参考答案:略16.已知x∈{1,2,x2},则x=________.参考答案:0或217.(5分)在大小为60°的二面角α﹣1﹣β中,已知AB?α,CD?β,且AB⊥l于B,CD⊥l于D,若AB=CD=1,BD=2,则AC的长为 .参考答案:考点: 与二面角有关的立体几何综合题.专题: 空间位置关系与距离.分析: 如图所示,,利用数量积运算性质可得=+,由AB⊥l于B,CD⊥l于D,可得=0.又在大小为60°的二面角α﹣1﹣β中,可得=1×1×cos120°,代入计算即可得出.解答: 解:如图所示,,∴=+,∵AB⊥l于B,CD⊥l于D,∴=0,又在大小为60°的二面角α﹣1﹣β中,∴=1×1×cos120°=﹣,∴=1+22+1﹣=5,∴=.故答案为:.点评: 本题考查了向量的多边形法则、数量积运算性质、向量垂直与数量积的关系、二面角的应用,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=,(1)求f(2)+f(),f(3)+f()的值;(2)求证f(x)+f()是定值.参考答案:【考点】函数的值.【分析】(1)利用函数表达式,能求出f(2)+f(),f(3)+f()的值.(2)由f(x)=,利用函数性质能证明f(x)+f()是定值1.【解答】解:(1)∵函数f(x)=,∴f(2)+f()===1,f(3)+f()===1.证明:(2)∵f(x)=,∴f(x)+f()===1.∴f(x)+f()是定值1.19.(12分)在平面直角坐标系xoy中,点。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足,求t的值。参考答案:20.(9分)已知向量||=1,||=.(1)若向量,的夹角为60°,求·的值;(2)若|+|=,求·的值;(3)若·(-)=0,求,的夹角.参考答案:(1)a·b=|a||b|cos〈a,b〉=1××cos60°=.(2)∵|a+b|=,∴=5,即a+2a·b+b=5,∴a·b=1.(3)∵a·(a-b)=0,∴a-a·b=0,a·b=1,∴cos〈a,b〉===∴a与b的夹角为.21.(本小题12分)已知函数(1)求函数的最小正周期;(2)求函数的最大值及其相对应的值。参考答案:(1)(2)22..已知,.(1)当k为何值时,与垂直?(2)当k为何值时,与平行?平行时它们是同向还是反向?参考答案:(1)19;(2)见解析【分析】(1)先表示出和的坐标,利用数量积为0可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资料员模拟试题及答案
- 电商对农产品供需关系的影响如何分析试题及答案
- 职场场景下的商务英语试题及答案
- 核物理实验的设计思想试题及答案
- 课程设计与乐理知识交融的最佳实践试题及答案
- 银行协同考试试题及答案
- 物理观点创新题及答案2025年
- 重要商业文献的英语解读与学习试题及答案
- 建德市公务员试题及答案
- 北京司法考试试题及答案
- 《人工智能生成合成内容标识办法》知识讲座
- 2024广西公务员【申论A卷、C卷+2023申论A卷】共3套真题及答案
- 2024北京西城区初一(下)期末英语试题和答案
- 2024年广东广州黄埔区穗东街道政府聘员招聘笔试真题
- 宝洁波士顿矩阵案例分析课件
- 【MOOC】电子技术应用实验2(数字电路综合实验)电子科技大学章节作业中国大学慕课答案
- DB45T 2306-2021 百香果无病毒健康种苗栽培技术规程
- 电工电子技术(第3版) 课件 1.7 基尔霍夫定律
- 2024年度食品饮料品牌授权区域代理销售合同书3篇
- 关于清理35KV高压架空线路树障的安全技术措施
- 人音版音乐七年级上册《友谊地久天长》课件
评论
0/150
提交评论