




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省泸西县泸源普通高级中学2024学年高二上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.2.如图,在空间四边形OABC中,,,,点N为BC的中点,点M在线段OA上,且OM=2MA,则()A. B.C. D.3.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.4.下列命题中,一定正确的是()A.若且,则a>0,b<0B.若a>b,b≠0,则>1C.若a>b且a+c>b+d,则c>dD.若a>b且ac>bd,则c>d5.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则6.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁7.的展开式中的系数是()A.1792 B.C.448 D.8.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.19.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆10.设正方体的棱长为,则点到平面的距离是()A. B.C. D.11.命题“,”的否定形式是()A., B.,C., D.,12.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.63二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列中,则q=___14.已知函数,若在上是增函数,则实数的取值范围是________15.已知P,A,B,C四点共面,对空间任意一点O,若,则______.16.如图,已知椭圆C1和双曲线C2交于P1、P2、P3、P4四个点,F1和F2分别是C1的左右焦点,也是C2的左右焦点,并且六边形是正六边形.若椭圆C1的方程为,则双曲线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=,椭圆的长半轴长与双曲线半实轴长之差为4,离心率之比为3∶7(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求△F1PF2的面积18.(12分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.19.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.20.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.21.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.22.(10分)在下列所给的三个条件中任选一个,补充在下面的问题中,并加以解答①过(-1,2);②与直线平行;③与直线垂直问题:已知直线过点M(3,5),且______(1)求的方程;(2)若与圆相交于点A、B,求弦AB的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【题目详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【题目点拨】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.2、D【解题分析】利用空间向量的线性运算即可求解.【题目详解】解:∵N为BC的中点,点M在线段OA上,且OM=2MA,且,,,故选:D.3、A【解题分析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【题目详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A4、A【解题分析】结合不等式的性质确定正确答案.【题目详解】A选项,若且,则,所以A选项正确.B选项,若,则,所以B选项错误.C选项,如,但,所以C选项错误.D选项,如,但,所以D选项错误.故选:A5、D【解题分析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【题目详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.6、C【解题分析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【题目详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【题目点拨】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题7、D【解题分析】根据二项式展开式的通项公式计算出正确答案.【题目详解】的展开式中,含的项为.所以的系数是.故选:D8、B【解题分析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【题目详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B9、A【解题分析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【题目详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.10、D【解题分析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【题目详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.11、A【解题分析】特称命题的否定是全称命题【题目详解】的否定形式是故选:A12、B【解题分析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【题目详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】根据等比数列的性质求得,再根据等比数列的通项公式求得答案.【题目详解】等比数列中,故,,所以,故答案为:314、【解题分析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【题目详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【题目点拨】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值15、【解题分析】由条件可得存在实数,使得,再用向量表示出向量,即可得出答案.详解】P,A,B,C四点共面,则存在实数,使得所以即所以,解得故答案为:16、【解题分析】先根据椭圆的方程求得焦点坐标,然后根据为正六边形求得点的坐标,即点在双曲线上,然后解出方程即可【题目详解】设双曲线的方程为:根据椭圆的方程可得:又为正六边形,则点的坐标为:则点在双曲线上,可得:又解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)椭圆方程为双曲线方程为;(2)12【解题分析】(1)根据半焦距,设椭圆长半轴为a,由离心率之比求出a,进而求出椭圆短半轴的长及双曲线的虚半轴的长,写出椭圆和双曲线的标准方程;(2)由椭圆、双曲线的定义求出与的长,在三角形中,利用余弦定理求出cos∠的值,进一步求得sin∠的值,代入面积公式得答案试题解析:(1)设椭圆方程为,双曲线方程为(a,b,m,n>0,且a>b),则解得:a=7,m=3,∴b=6,n=2,∴椭圆方程为双曲线方程为(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=PF1·PF2sin∠F1PF2=·10·4·=12考点:椭圆双曲线方程及性质18、(1)在、上递增,在上递减;(2).【解题分析】【小问1详解】由题设,且定义域为,则,当或时,;当时,.所以在、上递增,在上递减.【小问2详解】由题设,在上恒成立,所以在上恒成立,当时,满足题设;当时,,可得.综上,.19、(1);(2).【解题分析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【题目详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【题目点拨】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.20、(1)x2=8y(2)16【解题分析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1621、(1)证明见解析(2)【解题分析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路工程的行业未来趋势试题及答案
- 行政组织的定性与定量研究试题及答案
- 基于ARM架构的嵌入式设计试题及答案
- 深度学习公路工程试题及答案
- 发动机控制系统的应用与调整考核试卷
- 行政决策方式的多样性试题及答案
- 箱包行业渠道建设与经销商管理考核试卷
- 学习2025年计算机二级MySQL的快捷方式试题及答案
- 数据库故障与恢复流程试题及答案
- 基于RESTFUL的嵌入式解决方案试题及答案
- 专业文献阅读技巧
- 发那科注塑机讲义
- 初中英语词汇表(带音标)
- 中国公民普通护照申请表(正面)
- 人工智能与房地产营销
- LKJ系统车载设备换装作业指导书
- 《农村电商运营》农产品电商运营方案
- 区块链在金融领域的应用课件
- VDA6.3-2016过程审核对应的资料
- 采用新技术、新工艺、新材料、新设备的安全管理措施
- 《艺术概论》章节测试及答案
评论
0/150
提交评论