2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年青岛市重点中学高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线经过的一点是()A. B.C. D.2.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.183.已知等差数列,且,则()A.3 B.5C.7 D.94.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.5.如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米 B.米C.米 D.米6.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.27.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.8.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.9.曲线上的点到直线的最短距离是()A. B.C. D.110.函数的图象大致为()A B.C D.11.在中,角所对的边分别为,,,则外接圆的面积是()A. B.C. D.12.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则的前20项和___________.14.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.15.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.16.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,为的中点,连接.(1)求证:平面;(2)求平面与平面的夹角的余弦值.18.(12分)设P是抛物线上一个动点,F为抛物线的焦点.(1)若点P到直线距离为,求的最小值;(2)若,求的最小值.19.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力20.(12分)已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆于两点,证明为定值.21.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.22.(10分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】当时可得,可得答案.【题目详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C2、B【解题分析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【题目详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B3、B【解题分析】根据等差数列的性质求得正确答案.【题目详解】由于数列是等差数列,所以.故选:B4、C【解题分析】利用正弦定理求解即可.【题目详解】,,,由正弦定理可得,解得,故选:C.5、B【解题分析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【题目详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.6、B【解题分析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【题目详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【题目点拨】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.7、C【解题分析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【题目详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C8、D【解题分析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【题目详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.9、B【解题分析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【题目详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B10、A【解题分析】利用导数求得的单调区间,结合函数值确定正确选项.【题目详解】由,可得函数的减区间为,增区间为,当时,,可得选项为A故选:A11、B【解题分析】利用余弦定理可得,然后利用正弦定理可得,即求.【题目详解】因为,所以,由余弦定理得,,所以,设外接圆的半径为,由正统定理得,,所以,所以外接圆的面积是.故选:B.12、D【解题分析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【题目详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、135【解题分析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【题目详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.14、【解题分析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【题目详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.15、【解题分析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【题目详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:16、3【解题分析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【题目详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2).【解题分析】(1)根据平行四边形的判定定理和性质,结合线面垂直的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】因为为的中点,所以,而,所以四边形是平行四边形,因此,因为,,为的中点,所以,,而,因为,所以,而平面,所以平面;【小问2详解】根据(1),建立如图所示的空间直角坐标系,,于是有:,则平面的法向量为:,设平面的法向量为:,所以,设平面与平面的夹角为,所以.18、(1);(2)4.【解题分析】(1)利用抛物线的定义可知,将问题问题转化为求的最小值,即求.(2)判断点B在抛物线的内部,过B作垂直准线于点Q,交抛物线于点,利用抛物线的定义求解即可.【题目详解】解析(1)依题意,抛物线的焦点为,准线方程为.由已知及抛物线的定义,可知,于是问题转化为求的最小值.由平面几何知识知,当F,P,A三点共线时,取得最小值,最小值为,即的最小值为.(2)把点B的横坐标代入中,得,因为,所以点B在抛物线的内部.过B作垂直准线于点Q,交抛物线于点(如图所示).由抛物线的定义,可知,则,所以的最小值为4.【题目点拨】本题考查了抛物线的定义,理解定义是解题的关键,属于基础题.19、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解题分析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.20、(1);(2)证明见解析.【解题分析】(1)借助题设条件建立方程组求解;(2)依据题设运用直线与椭圆的位置关系探求.试题解析:(1)由,可得椭圆方程.(2)设的方程为,代入并整理得:.设,,则,同理则.所以,是定值.考点:椭圆的标准方程几何性质及直线与椭圆的位置关系等有关知识的综合运用【易错点晴】本题考查的是椭圆的标准方程等基础知识及直线与椭圆的位置关系等知识的综合性问题.解答本题的第一问时,直接依据题设条件运用椭圆的几何性质和椭圆的有关概念建立方程组,进而求得椭圆的标准方程为;第二问的求解过程中,先设直线的方程为,再借助二次方程中根与系数之间的关系,依据坐标之间的关系进行计算探求,从而使得问题获解.21、(1);(2)过定点,坐标为.【解题分析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【题目点拨】关键点睛:根据一元二次方程根与系数关系是解题的关键.22、(1)见解析;(2)2+4.【解题分析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论