山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题含解析_第1页
山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题含解析_第2页
山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题含解析_第3页
山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题含解析_第4页
山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省陵川第一中学校、泽州一中等四校2024年高二数学第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-132.已知直线过点,且与直线垂直,则直线的方程是()A. B.C. D.3.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.4.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.5.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.6.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.07.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.928.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.9.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.8110.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.11.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B.C. D.12.设a,b,c非零实数,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“第七届全国画院美术作品展”于2021年12月2日至2022年2月20日在郑州美术馆展出.已知某油画作品高2米,宽6米,画的底部离地有2.7米(如图所示).有一身高为1.8米的游客从正面观赏它(该游客头顶E到眼睛C的距离为10),设该游客离墙距离CD为x米,视角为.为使观赏视角最大,x应为___________米.14.执行如图所示的程序框图,则输出的结果________15.已知函数,则函数在区间上的平均变化率为___________.16.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.18.(12分)如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.19.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值20.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和21.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明22.(10分)已知数列是公差为2的等差数列,且满足,,成等比数列(1)求数列的通项公式;(2)求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】直接利用等差数列通项和求和公式计算得到答案.【题目详解】,,解得,故.故选:C.2、D【解题分析】由题意设直线方程为,然后将点坐标代入求出,从而可求出直线方程【题目详解】因为直线与直线垂直,所以设直线方程为,因为直线过点,所以,得,所以直线方程为,故选:D3、D【解题分析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【题目详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D4、C【解题分析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【题目详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.5、D【解题分析】先设,代入化简,由纯虚数定义求出,即可求解.【题目详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.6、A【解题分析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【题目详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A7、D【解题分析】根据几何概型的概率公式即可直接求出答案.【题目详解】易知,根据几何概型的概率公式,得,所以.故选:D.8、D【解题分析】利用直线垂直系数之间的关系即可得出.【题目详解】解:直线和直线互相垂直,则,解得:.故选:D.9、A【解题分析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【题目详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A10、B【解题分析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【题目详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.11、C【解题分析】设,利用得到关于的方程,解方程即可得到答案.【题目详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.12、C【解题分析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【题目详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,进而得到,,从而求出,再利用基本不等式即可求得答案.【题目详解】设,则,,所以,当且仅当时取“=”.所以该游客离墙距离为米时,观赏视角最大.故答案为:.14、132【解题分析】根据程序框图模拟程序运行,确定变量值的变化可得结论【题目详解】程序运行时,变量值变化如下:,判断循环条件,满足,,;判断循环条件,满足,,;判断循环条件,不满足,输出故答案为:13215、3【解题分析】根据平均变化率的定义即可计算.【题目详解】设,因,,所以.故答案为:316、120【解题分析】根据二项式的展开式系数的相关知识即可求解.【题目详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:120三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用,结合已知条件,即可容易求得通项公式;(2)根据(1)中所求,对数列进行裂项求和,即可求得.【小问1详解】当时,.当时,,因为当时,,所以.【小问2详解】因为,所以,故数列的前项和.18、(1)证明见解析;(2).【解题分析】(1)连接,可通过证明,得平面;(2)以O为坐标原点建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量,通过向量的夹角公式可得答案.【小问1详解】如图,连接,在中,由可得.因为,,所以,,因为,,,所以,所以.又因为,平面,,所以平面.【小问2详解】由(1)可知,,,两两垂直,以O为坐标原点建立如图所示的空间直角坐标系,则,,,,.由,有,则,设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.由,,,可得平面与平面所成夹角的余弦值为.19、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解题分析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0)=-a20、(1);(2)【解题分析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又,解得或(舍去),所以.,又,,,;【小问2详解】,.21、(1)单调递减,在单调递增;(2)见解析.【解题分析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论