




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年云南省罗平二中数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C. D.2.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.143.已知,,,则,,的大小关系是A. B.C. D.4.执行如图所示的程序框图,则输出的A. B.C. D.5.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.486.实数且,,则连接,两点的直线与圆C:的位置关系是()A.相离 B.相切C.相交 D.不能确定7.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.8.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.99.已知分别是等差数列的前项和,且,则()A. B.C. D.10.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.11.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.12.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___14.数列的前项和为,则的通项公式为________.15.已知函数集合,若A中有且仅有4个元素,则满足条件的整数a的个数为______16.若,且,则的最小值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.18.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.19.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.20.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和21.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值22.(10分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【题目详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.2、B【解题分析】画出约束条件的可行域,利用目标函数的几何意义即可求解【题目详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B3、B【解题分析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【题目详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【题目点拨】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目4、B【解题分析】根据输入的条件执行循环,并且每一次都要判断结论是或否,直至退出循环.【题目详解】,,,;,【题目点拨】本题考查程序框图,执行循环,属于基础题.5、D【解题分析】利用等差数列的前项和公式以及等差数列的性质即可求出.【题目详解】因为为等差数列的前项和,所以故选:D【题目点拨】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.6、B【解题分析】由题意知,m,n是方程的根,再根据两点式求出直线方程,利用圆心到直线的距离与半径之间的关系即可求解.【题目详解】由题意知,m,n是方程的根,,,过,两点的直线方程为:,圆心到直线的距离为:,故直线和圆相切,故选:B【题目点拨】本题考查了直线与圆的位置关系,考查了计算求解能力,属于基础题.7、A【解题分析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【题目详解】由题意有,得,又由,得,解得,,有故选:A.8、C【解题分析】根据题意作出辅助线直接求解即可.【题目详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C9、D【解题分析】利用及等差数列的性质进行求解.【题目详解】分别是等差数列的前项和,故,且,故,故选:D10、A【解题分析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【题目详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题11、A【解题分析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【题目详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.12、C【解题分析】画出约束条件的可行域,利用目标函数的几何意义即可求解【题目详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【题目详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.14、【解题分析】讨论和两种情况,进而利用求得答案.【题目详解】由题意,时,,时,,则,于是,故答案为:15、32【解题分析】作出的图像,由时,不等式成立,所以,判断出符合条件的非零整数根只有三个,即等价于时,;时,;利用数形结合,进行求解.【题目详解】作出的图像如图所示:因为时,不等式成立,所以,符合条件的非零整数根只有三个.由可得:时,;时,;所以在y轴左侧,的图像都在的下方;在y轴右侧,的图像都在的上方;而,,,,.平移直线,由图像可知:当时,集合A中除了0只含有1,2,3,符合题意,此时整数a可以取:-23,-22,-21……-9.一共15个;当时,集合A中除了0含有1,-1,-2,符合题意.当时,集合A中除了0只含有-1,-2,-3,符合题意,此时整数a可以取:5,6,7……20一共16个.所以整数a的值一共有15+1+16=32(个).故答案为:32【题目点拨】分离参数法求零点个数的问题是转化为,分别做出和的图像,观察交点的个数即为零点的个数.用数形结合法解决零点问题常有以下几种类型:(1)零点个数:几个零点;(2)几个零点的和;(3)几个零点的积.16、【解题分析】应用基本不等式“1”的代换求a+4b的最小值即可.【题目详解】由,有,则,当且仅当,且,即时等号成立,∴最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析,.(2).【解题分析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以椭圆的标准方程为;若选③:因为,所以,即,又,解得,,所以椭圆的标准方程为;【小问2详解】解:由题意得直线的斜率必存在,设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,则,因为点为AB中点,所以,解得,所以所求的直线方程为,即.18、(1)证明见解析(2)答案见解析【解题分析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.19、(1)2(2)【解题分析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联立直线和椭圆方程,用点的坐标表示上述关系式,化简即可得答案.【小问1详解】因为,所以,又因为,所以,,所以,则椭圆的短轴长为2.【小问2详解】若为等边三角形,应有,即.当直线的斜率不存在时,直线的方程为,且,此时若为等边三角形,则点应为长轴顶点,且,即.当直线的斜率为0时,直线的方程为,且,此时若为等边二角形,则点应为短轴顶点,此时,不为等边三角形.当直线的斜率存在且不为0时,设其方程为,则直线的方程为.由得,同理.因为,所以,解得.因为,所以,则,即.综上,的取值范围是.20、(1);;(2).【解题分析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.21、(1)(2)10【解题分析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.22、(1);(2).【解题分析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 荆门市中储粮2025秋招财务资产岗高频笔试题库含答案
- 衢州市中储粮2025秋招面试专业追问题库仓储保管岗
- 中国广电林芝市2025秋招技术岗专业追问清单及参考回答
- 新疆地区中石油2025秋招笔试综合知识专练题库及答案
- 炼铁员工安全培训课件
- 榆林市中储粮2025秋招面试半结构化模拟题30问及答案
- 燃气泄漏培训考试题及答案
- 固原市中石化2025秋招笔试提升练习题含答案
- 国家能源阿拉善盟2025秋招化学工程类面试追问及参考回答
- 果洛藏族自治州中储粮2025秋招综合管理岗高频笔试题库含答案
- 水上乐园工程行业深度调研及发展战略咨询报告
- 政治经济学导论课件
- 2020年中国古代史模拟考试题库588题(含参考答案)
- TD-T 1048-2016耕作层土壤剥离利用技术规范
- 2024-2025学年中职思想政治心理健康与职业生涯高教版(2023)教学设计合集
- 河南省郑州市枫杨外国语学校2024-2025学年八年级上学期第一次月考物理试卷
- 沪科版(2024)八年级全一册物理第一章 运动的世界 测试卷(含答案)
- 农村法律明白人培训
- 2024乡村医生考试题库(含答案)
- (详尽多条款)地形图保密协议模板
- 无损检测VT-PT作业指导书SOP
评论
0/150
提交评论