




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省兰州市高二数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列中,,则()A. B.C.2 D.42.已知集合A={1,a,b},B={a2,a,ab},若A=B,则a2021+b2020=()A.-1 B.0C.1 D.23.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.4.已知等差数列的前n项和为,且,,则为()A. B.C. D.5.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.6.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或237.已知命题“若,则”,命题“若,则”,则下列命题中为真命题的是()A. B.C. D.8.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.10.集合,则集合A的子集个数为()A.2个 B.4个C.8个 D.16个11.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.12.已知正三棱柱的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则________.14.在正三棱柱中,,点P满足,其中,,则下列说法中,正确的有_________(请填入所有正确说法的序号)①当时,的周长为定值②当时,三棱锥的体积为定值③当时,有且仅有一个点P,使得④当时,有且仅有一个点P,使得平面15.直线的倾斜角为_______________.16.若等比数列的前n项和为,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和18.(12分)如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由19.(12分)在四面体ABCD中,CB=CD,,且E,F分别是AB,BD的中点,求证:(I)直线;(II).20.(12分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.21.(12分)已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.22.(10分)已知(1)讨论函数的单调性;(2)若函数在上有1个零点,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】利用等比数列的下标特点,即可得到结果.【题目详解】∵,∴,∴,∴.故选:D2、A【解题分析】根据A=B,可得两集合元素全部相等,分别求得和ab=1两种情况下,a,b的取值,分析讨论,即可得答案.【题目详解】因为A=B,若,解得,当时,不满足互异性,舍去,当时,A={1,-1,b},B={1,-1,-b},因为A=B,所以,解得,所以;若ab=1,则,所以,若,解得或1,都不满足题意,舍去,若,解得,不满足互异性,舍去,故选:A【题目点拨】本题考查两集合相等的概念,在集合相等问题中由一个条件求出参数后需进行代入检验,检验是否满足互异性、题设条件等,属基础题.3、A【解题分析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【题目详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A4、C【解题分析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【题目详解】由题意知:,解得,则.故选:C.5、A【解题分析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【题目详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.6、D【解题分析】根据双曲线的定义知,,即可求解.【题目详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【题目点拨】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.7、D【解题分析】利用指数函数的单调性可判断命题的真假,利用特殊值法可判断命题的真假,结合复合命题的真假可判断出各选项中命题的真假.【题目详解】对于命题,由于函数为上的增函数,当时,,命题为真命题;对于命题,若,取,,则,命题为假命题.所以,、、均为假命题,为真命题.故选:D.【题目点拨】本题考查简单命题和复合命题真假的判断,考查推理能力,属于基础题.8、D【解题分析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【题目详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.9、B【解题分析】求出圆心到直线距离,减去半径即为答案.【题目详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B10、C【解题分析】取,再根据的周期为4,可得,即可得解.【题目详解】因为,所以.时,,时,,时,,时,,所以集合,所以的子集的个数为,故选:C.11、D【解题分析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【题目详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.12、C【解题分析】过作,连接,由于,故平面,所以所求直线与平面所成的角为,设棱长为,则,故,.点睛:本题主要考查空间立体几何直线与平面的位置关系,考查直线与平面所成的角,考查线面垂直的证明方法和常见几何体的结构特征.由于题目所给几何体为直三棱柱,故侧棱和底面垂直,这是一个重要的隐含条件,通过作交线的垂线,即可得到高,由此作出二面角的平面角.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】求出导函数,确定导函数奇函数,然后可求值【题目详解】由已知,它是奇函数,∴故答案为:【题目点拨】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键14、②④【解题分析】①结合得到P在线段上,结合图形可知不同位置下周长不同;②由线面平行得到点到平面距离不变,故体积为定值;③结合图形得到不同位置下有,判断出③错误;④结合图形得到有唯一的点P,使得线面垂直.【题目详解】由题意得:,,,所以P为正方形内一点,①,当时,,即,,所以P在线段上,所以周长为,如图1所示,当点P在处时,,故①错误;②,如图2,当时,即,即,,所以P在上,,因为∥BC,平面,平面,所以点P到平面距离不变,即h不变,故②正确;③,当时,即,如图3,M为中点,N为BC的中点,P是MN上一动点,易知当时,点P与点N重合时,由于△ABC为等边三角形,N为BC中点,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因为平面,则,当时,点P与点M重合时,可证明出⊥平面,而平面,则,即,故③错误;④,当时,即,如图4所示,D为的中点,E为的中点,则P为DE上一动点,易知,若平面,只需即可,取的中点F,连接,又因为平面,所以,若,只需平面,即即可,如图5,易知当且仅当点P与点E重合时,故只有一个点P符合要求,使得平面,故④正确.故选:②④【题目点拨】立体几何的压轴题,通常情况下要画出图形,利用线面平行,线面垂直及特殊点,特殊值进行排除选项,或者用等体积法进行转化等思路进行解决.15、【解题分析】由直线的斜率为,得到,即可求解.【题目详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【题目点拨】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.16、5【解题分析】根据题意和等比数列的求和公式,求得,结合求和公式,即可求解.【题目详解】因为,若时,可得,故,所以,化简得,整理得,解得或,因为,解得,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选①②③,答案均为;(2)66【解题分析】(1)选①时,利用二项式定理求得的通项公式为,从而得到,求出n的值;选②时,利用二项式系数和的公式求出,解出n的值;选③时,利用赋值法求解,,从而求出n的值;(2)在第一问求出的的前提下进行赋值法求解.【小问1详解】选①,其中,而的通项公式为,当时,,所以,解得:;选②,由于,所以,解得:;选③,令中得:,再令得:,解得:;【小问2详解】由(1)知:n=7,所以,令得:,令得:,两式相减得:,所以,故展开式中的奇数次幂的项的系数和为66.18、(1)证明见解析(2)存在,点P为棱SD靠近点D的三等分点【解题分析】(1)由的面积为1,得到,,由,点P为SD的中点,所以,同理可得,根据线面垂直的判断定理可得平面PAC,再由面面垂直的判断定理可得答案;(2)存在,分别以OB,OC,OS所在直线为x,y,z轴,建立空间直角坐标系,假设在棱SD上存在点P,设,求出平面PAC、平面ACD的一个法向量,由二面角的向量法可得答案.【小问1详解】因为点S在底面ABCD上的射影为O,所以平面ABCD,因为四边形ABCD是边长为的正方形,所以,又因为的面积为1,所以,,所以,因为,点P为SD的中点,所以,同理可得,因为,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小问2详解】存在,连接,由平面ABCD,平面ABCD,平面ABCD,又,可得两两垂直,分别以所在直线为x,y,z轴,建立空间直角坐标系,如图,则,,,,假设在棱SD上存在点P使二面角的余弦值为,设,,,所以,,设平面PAC的一个法向量为,则,因为,,所以,令,得,,因为平面ACD的一个法向量为,所以,化简得,解得或(舍),所以存在P点符合题意,点P为棱SD靠近点D的三等分点19、(I)证明见解析(II)证明见解析【解题分析】证明:(I)E,F分别为AB,BD的中点(II),又,所以20、(1);(2)证明见解析;(3).【解题分析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方程;(2)设点,,直线的倾斜角互补,则两直线斜率互为相反数,用斜率公式计算得到,即可计算kAB;(3)若,由两直线斜率积为-1,可得到关于与的等量关系,写出直线AB的方程,将等量关系代入直线方程整理可得直线AB经过的定点【题目详解】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.【题目点拨】本题考查直接法求轨迹方程,考查直线斜率为定值的求法和直线恒过定点问题.21、(1)8;(2)证明见解析.【解题分析】(1)联立直线与抛物线方程,应用韦达定理及弦长公式求线段AB的长;(2)设为,联立抛物线由韦达定理可得,,应用两点式判断是否为0即可证结论.【小问1详解】由题设,联立直线与抛物线方程可得,则,,∴,,所以.【小问2详解】由题设,,又直线l经过点P(-1,0),此时直线斜率必存在且不为0,可设为,联立抛物线得:,则,,又,故,而,所以,所以A'、F、B三点共线.22、(1)答案见解析;(2).【解题分析】(1)对函数求导,按a值的正负分析讨论导数值的符号计算作答.(2)求出函数的解析式并求导,再按在值的正负分段讨论推理作答.【小问1详解】函数的定义域为R,求导得:当时,当时,,当时,,则在上单调递减,在上单调递增,当时,令,得,若,即时,,则有在R上单调递增,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,若,即时,当或时,,当时,,则有在,上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电器厂顶岗实习报告范文
- 从数字学习到智慧学习教育技术的演进之路
- 企业如何通过实施智能交通系统提升商业竞争力与安全性
- 智能互动构建现代教学新模式
- 中职文化课件
- 湘西市重点中学2025届物理高一第二学期期末综合测试试题含解析
- 专题06 读后续写校园生活类话题(测试)原卷版-2025年高考英语二轮复习
- 河南省焦作市2025届物理高一下期末达标测试试题含解析
- 河南省项城三高2025年高一物理第二学期期末质量检测模拟试题含解析
- 教育机器人技术教学辅助的发展趋势
- 2023年春季内蒙古高一化学学业水平合格性考试卷真题
- 思维导图在小学数学复习课中的应用研究 论文
- 导管小组护理管理手册
- 宝钢硅钢厂工艺流程
- 退伙协议个体工商户
- 中草药种植的土壤改良技术
- 尿脓毒症护理查房
- 安全绿十字看板(A4打印)
- 家长会课件:七年级暑假家长会课件
- CMK自动计算公式表格模板
- 急性中毒知识讲座课件
评论
0/150
提交评论