




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市第七十一中学2024年数学高三上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.2.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.若复数满足(是虚数单位),则()A. B. C. D.4.已知等式成立,则()A.0 B.5 C.7 D.135.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.6.在展开式中的常数项为A.1 B.2 C.3 D.77.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.8.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加9.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线10.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.11.设,其中a,b是实数,则()A.1 B.2 C. D.12.若,满足约束条件,则的最大值是()A. B. C.13 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.14.一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,则该四面体的外接球的体积为__________.15.数据的标准差为_____.16.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记数列的前项和为,已知成等差数列.(1)证明:数列是等比数列,并求的通项公式;(2)记数列的前项和为,求.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面积.19.(12分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.20.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.22.(10分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【题目详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解题分析】
根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【题目详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,,此时,,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题.3、B【解题分析】
利用复数乘法运算化简,由此求得.【题目详解】依题意,所以.故选:B【题目点拨】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.4、D【解题分析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【题目点拨】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.5、C【解题分析】
画出几何体的图形,然后转化判断四个命题的真假即可.【题目详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【题目点拨】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.6、D【解题分析】
求出展开项中的常数项及含的项,问题得解。【题目详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【题目点拨】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。7、A【解题分析】
推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【题目详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.【题目点拨】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.8、D【解题分析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【题目详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【题目点拨】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.9、C【解题分析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【题目详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【题目点拨】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.10、B【解题分析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【题目详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11、D【解题分析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【题目详解】由题可知:,即,所以则故选:D【题目点拨】本题考查复数模的计算,考验计算,属基础题.12、C【解题分析】
由已知画出可行域,利用目标函数的几何意义求最大值.【题目详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【题目点拨】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【题目详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【题目点拨】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.14、【解题分析】
将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【题目详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【题目点拨】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.15、【解题分析】
先计算平均数再求解方差与标准差即可.【题目详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【题目点拨】本题主要考查了标准差的计算,属于基础题.16、【解题分析】
先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【题目详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【题目点拨】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2)【解题分析】
(1)由成等差数列,可得到,再结合公式,消去,得到,再给等式两边同时加1,整理可证明结果;(2)将(1)得到的代入中化简后再裂项,然后求其前项和.【题目详解】(1)由成等差数列,则,即,①当时,,又,②由①②可得:,即,时,.所以是以3为首项,3为公比的等比数列,,所以.(2),所以.【题目点拨】此题考查了数列递推式,等比数列的证明,裂列相消求和,考查了学生分析问题和解决问题的能力,属于中档题.18、(1);(2).【解题分析】
(1)由正弦定理化简已知等式可得sinBcosA﹣sinAsinB=1,结合sinB>1,可求tanA=,结合范围A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根据三角形的面积公式即可计算得解.【题目详解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根据正弦定理得到∴b=6,∴S△ABC=ab==6.【题目点拨】本题主要考查了正弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19、(1)见证明;(2)【解题分析】
(1)根据面面垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;(2)设,利用椎体的体积公式求得,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.【题目详解】(1)证明:因为,平面平面,平面平面,平面,所以平面,因为平面,所以.因为,所以,所以,因为,所以平面.(2)解:设,则,四面体的体积.,当时,,单调递增;当时,,单调递减.故当时,四面体的体积取得最大值.以为坐标原点,建立空间直角坐标系,则,,,,.设平面的法向量为,则,即,令,得,同理可得平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【题目点拨】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的性质,线面垂直的判定,椎体的体积,二面角的求法,在解题的过程中,注意巧用导数求解体积的最大值.20、(1)见解析(2)【解题分析】
(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【题目详解】(1)因为平面,所以,又因为,,,所以,因此,所以,因此平面,所以,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省巴中市2024-2025学年高二下学期3月月考英语试题(解析版)
- 广州人证考试试题及答案
- 恩启vbm考试试题及答案
- 岳阳幼教考试试题及答案
- hse培训考试试题及答案
- 高中雅思考试试题及答案
- 高中java期末考试试题及答案
- 工会法考试试题及答案
- 高考考生考试试题及答案
- 2025-2030纤维水泥行业风险投资发展分析及投资融资策略研究报告
- 江苏泰州市泰兴经济开发区国有企业招聘笔试题库2024
- 2024年风力发电运维值班员(技师)技能鉴定考试题库-下(判断题)
- DL∕T 1709.3-2017 智能电网调度控制系统技术规范 第3部分:基础平台
- 考核办法和考核方案
- 化妆品生产OEM合同书
- 海上CANTITRAVEL平台桩基施工关键技术应用v7
- 2024年4月自考08229计算机统计分析方法试题
- 有色金属冶金概论课程教案
- 华为MA5800配置及调试手册
- 中国生产安全行业市场运行动态及投资发展潜力分析报告
- 2023-2024年电子物证专业考试复习题库(含答案)
评论
0/150
提交评论