




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市万顺新建中学2021年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若角满足,则是(
)A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角参考答案:C【分析】根据同角的三角函数关系得出且,由此判断是第几象限角.【详解】角满足,,,是第三象限角.故选:C.【点睛】本题考查三角函数在各象限的符号和同角三角函数的平方关系,难度较易.2.经过点的直线的斜率等于1,则m的值为(
)A.1
B.4
C.1或3
D.1或4
参考答案:A略3.(5分)已知集合M={﹣1,0,1},N={x|0≤log2x≤1,x∈Z},则M∩N=() A. {0,1} B. {﹣1,0} C. {0} D. {1}参考答案:D考点: 交集及其运算.专题: 集合.分析: 利用交集的性质和对数函数的性质求解.解答: ∵集合M={﹣1,0,1},N={x|0≤log2x≤1,x∈Z}={1,2},∴M∩N={1}.故选:D.点评: 本题考查交集的求法,是基础题,解题时要注意对数函数的性质的合理运用.4.已知正数x、y满足,则的最小值为(
)A.5 B. C. D.2参考答案:C分析:根据题意将已知条件等价转化为,故而可得,利用基本不等式即可得结果.详解:∵正数满足,∴,∴当且仅当即,时,等号成立,即的最小值为,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.5.(3分)下列四组函数中,函数f(x)与g(x)表示同一个函数的是() A. B. C. f(x)=x0,g(x)=1 D. 参考答案:D考点: 判断两个函数是否为同一函数.专题: 函数的性质及应用.分析: 根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.解答: 对于A,f(x)==|x|(x∈R),与g(x)==x(x≥0)的定义域不同,对应关系也不同,∴不是同一个函数;对于B,f(x)=x(x∈R),与g(x)==x(x≠0)的定义域不同,对应关系也不同,∴不是同一个函数;对于C,f(x)=x0=1(x≠0),与g(x)=1(x∈R)的定义域不同,∴不是同一个函数;对于D,f(x)=|x|=(x∈R),与g(x)=(x∈R)的定义域相同,对应关系也相同,∴是同一个函数.故选:D.点评: 本题考查了判断两个函数是否为同一函数的问题,是基础题目.6.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台 C.圆柱 D.圆台参考答案:D【考点】由三视图求面积、体积.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台.故选D.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为
(
)
A、
B、
C、
D、参考答案:B略8.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围为()A.(﹣1,+∞) B.(﹣1,1) C.(﹣∞,1) D.[﹣1,1]参考答案:B【考点】根的存在性及根的个数判断;函数的图象.【分析】作出函数f(x),得到x1,x2关于x=﹣1对称,x3x4=1;化简条件,利用数形结合进行求解即可.【解答】解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;当|log2x|=1得x=2或,则1<x4<2;<x3<1;故x3(x1+x2)+=﹣2x3+,<x3<1;则函数y=﹣2x3+,在<x3<1上为减函数,则故x3=取得最大值,为y=1,当x3=1时,函数值为﹣1.即函数取值范围是(﹣1,1).故选:B.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.9.(5分)定义在R上的函数满足f(x)=f(x+2),当x∈[1,3]时,f(x)=2﹣|x﹣2|,则() A. B. f(sin1)>f(cos1) C. D. f(cos2)>f(sin2)参考答案:D考点: 函数的周期性.专题: 函数的性质及应用.分析: 本题先通过条件当x∈[1,3]时的解析式,求出函数在[﹣1,1]上的解析式,得到相应区间上的单调性,再利用函数单调性比较各选项中的函数值大小,得到本题结论.解答: ∵当x∈[1,3]时,f(x)=2﹣|x﹣2|,f(x)=f(x+2),∴当x∈[﹣1,1]时,x+2∈[1,3],f(x)=f(x+2)=2﹣|(x+2)﹣2|=2﹣|x|,f(﹣x)=f(x).∴f(x)在[﹣1,1]上的偶函数.∴当x>0时,f(x)=2﹣x,f(x)在[0,1]上单调递减.∵,∴﹣<cos2<0,,∴0<﹣cos2<<sin2,∴f(cos2)=f(﹣cos2)<f(sin2).故选D.点评: 本题考查了函数的奇偶性和单调性及应用,本题难度不大,属于基础题.10.在四边形ABCD中,若·=-||·||,且·=||·||,则该四边形一定是A.平行四边形
B.矩形
C.菱形
D.正方形参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.(2014?商丘二模)在△ABC中,D为边BC上的中点,AB=2,AC=1,∠BAD=30°,则AD=_________.参考答案:12.如图所示,三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N-AMC的体积V与x的变化关系,其中正确的是()
参考答案:A略13.在边长为1的正三角形ABC中,,,且,则的最小值等于
.参考答案:如图所示,则,故,则,所以
,当且仅当时取等号,所以的最小值为.
14.设,则满足条件的所有实数a的取值范围为
;参考答案:15.已知函数且的图象必经过点Q,则点Q的坐标是
参考答案:(5,0)
16.如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,?=2,则?的值是.参考答案:22【考点】向量在几何中的应用;平面向量数量积的运算.【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,?=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴?=(+)?(﹣)=||2﹣?﹣||2=25﹣?﹣12=2,故?=22,故答案为:22.17.设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为
▲
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设.(1)用a表示的最大值;(2)当时,求a的值.参考答案:(1)(2)或【分析】(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综上或.【点睛】本题主要考查了三角函数恒等变换的应用和二次函数的性质问题,考查了分段函数求值问题,是中档题.19.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)的单调区间;(Ⅲ)当,求f(x)的值域.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)根据函数的周期,最值过定点,求出A,ω和φ的值即可,(Ⅱ)结合三角函数的单调性进行求解即可.(Ⅲ)求出角的范围结合三角函数的单调性求出函数的最值即可求出函数的值域.【解答】解:(Ⅰ)∵函数的最小正周期为π,最小值为﹣2,∴A=2,T=,即ω=2,则函数f(x)=2sin(2x+φ),∵图象上一个最低点为.∴2sin(2×+φ)=﹣2,即sin(+φ)=﹣1,则+φ=+2kπ,k∈Z,则φ=+2kπ,k∈Z,∵,∴当k=0时,φ=,即f(x)的解析式为f(x)=2sin(2x+);(Ⅱ)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的单调递减区间为为.由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的单调递增区间为[kπ﹣,kπ+],k∈Z;(Ⅲ)当时,2x∈[0,],则2x+∈[,],则sin(2x+)=sin=,sin(2x+)=sin=,则≤f(x)≤2×,即1≤f(x)≤,即f(x)的值域为[1,].【点评】本题主要考查三角函数解析式的求解以及函数单调性和值域的求解,结合条件求出A,ω和φ的值是解决本题的关键.20.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)参考答案:解:如图,设送报人到达的时间为,小王离家去工作的时间为。(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.=SA/SΩ=0.5/4=0.125.答:小王离家前不能看到报纸的概率是0.125.21.已知函数.(1)求函数的定义域;(2)若函数的定义域关于坐标原点对称,试讨论它的奇偶性和单调性;参考答案:(1),所以当时,定义域为;当时,定义域为;当时,定义域为
(2)函数的定义域关于坐标原点对称,当且仅当,此时.对于定义域D=内任意,,,所以为奇函数;当,在内单调递减;由于为奇函数,所以在内单调递减;
22.(12分)已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=an?3n,求数列{bn}的前n项和Sn.参考答案:【考点】数列的求和;等差数列的通项公式.【分析】(1)由数列{an}是等差数列,且a1=2,a1+a2+a3=12,利用等差数列的通项公式先求出d=2,由此能求出数列{an}的通项公式.(2)由an=2n,知bn=an?3n=2n?3n,所以Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,再由错位相减法能够求出数列{bn}的前n项和Sn.【解答】解:(1)∵数列{an}是等差数列,且a1=2,a1+a2+a3=12,∴2+2+d+2+2d=12,解得d=2,∴an=2+(n﹣1)×2=2n.(2)∵an=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 佛山市中储粮2025秋招面试专业追问题库基建工程岗
- 初三冲刺励志演讲稿
- 2025年4月四川内江市东兴区城镇公益性岗位招聘19人模拟试卷及答案详解(考点梳理)
- 周岁宴会致辞
- 2025年海口市直属教师招聘153人考前自测高频考点模拟试题及参考答案详解一套
- 2025年电子竞技俱乐部运营管理与电竞俱乐部电竞游戏开发合作研究报告
- 商标设计注册协议5篇
- 2025年建筑施工安全管理信息化在施工现场安全评估中的应用报告
- 2025年衢州市卫生健康委员会衢州市中心血站招聘编外人员2人考前自测高频考点模拟试题含答案详解
- 卢仁峰先进事迹(集合15篇)
- 河北省2025-2026学年高一上学期9月月考测评英语试卷
- 2025年省盐业投资控股集团有限公司招聘笔试备考试题带答案详解
- 钢管桩施工土建方案范例
- 保安三级安全考试题库及答案解析
- 市场仿真花施工方案
- 2025年入团知识考试题库(含答案)
- 职业培训项目实施方案
- 破产重整程序中金融债权人保护问题研究
- 设备预防维护培训课件
- 《直播营销与运营》PPT商品选择与规划
- 机电设备调试协议书
评论
0/150
提交评论