




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.2.1垂径定理驶向胜利的彼岸20149
王帅…讲授新课…圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?讨论:你是用什么方法解决上述问题的?
归纳:圆是轴对称图形,其对称轴是任意一条过圆心的直线驶向胜利的彼岸(一)想一想探索垂径定理
如图:在⊙O中,CD为直径,AB为弦,CD⊥AB于M,2023/6/28问题:(1)右图是轴对称图形吗?
如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?
说一说你的理由。驶向胜利的彼岸思考:归纳:2023/6/28总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。驶向胜利的彼岸由①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.③AM=BM,探索垂径定理的逆定理1.想一想:如下图示,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.同学们利用圆纸片动手做一做,然后回答:(1)此图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由。驶向胜利的彼岸由①CD是直径③AM=BM可推得⌒⌒④AC=BC,②CD⊥AB,⌒⌒⑤AD=BD.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
2.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE。∴AE-CE=BE-DE
即AC=BD.ACDBOE1.在半径为5㎜的⊙O中,弦AB=8㎜,则O到AB的距离是=
。OABP练一练(1)3mm注意:解决有关弦的问题,过圆心作弦的垂线,或作垂直于弦的直径,也是一种常用辅助线的添法.讲例[例]如右图所示,一条公路的转弯处是一段圆弧(即图中CD,点O是CD的圆心),其中CD=600m,E为CD上一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.2023/6/28[分析]要求弯路的半径,连接OC,只要求出OC的长便可以了.因为已知OE⊥CD,所以CF=CD=300cm,OF=OE-EF,此时得到了一个Rt△CFO,利用勾股定理便可列出方程.驶向胜利的彼岸⌒⌒⌒你可以写出相应的命题吗?相信自己是最棒的!知“二”推“三”如图,在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.
想一想P918●OABCDM└①过圆心的直线,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.垂径定理及逆定理
想一想P919●OABCDM└条件结论命题①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直径平分弦,并且平分弦所的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.挑战自我垂径定理的推论
如果圆的两条弦互相平行,那么这两条弦所平的弧相等吗?老师提示:这两条弦在圆中位置有两种情况:随堂练习P9210●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧垂径定理的推论圆的两条平行弦所夹的弧相等.方法规律
想一想已知:如图,直径CD⊥AB,垂足为E.⑴若半径R=2,AB=,求OE、DE的长.⑵若半径R=2,OE=1,求AB、DE的长.⑶由⑴、⑵两题的启发,你能总结出什么规律吗?方法总结
对于一个圆中的弦长a、弦心距为d、圆半径r、弓形高h,这四个量中,只要已知其中任意两个量,就可以求出另外两个量,如图有:⑴d+h=r⑵赵州石拱桥例1.
1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.4m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).RDOABC37.4m7.2m练一练在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.ED┌
600变形题在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.BAO600ø650DC例2:如图,已知圆O的直径AB与弦CD相交于G,AE⊥CD于E,
BF⊥CD于F,且圆O的半径为
10㎝,CD=16㎝,求AE-BF的长。练习3:如图,CD为圆O的直径,弦
AB交CD于E,∠CEB=30°,
DE=9㎝,CE=3㎝,求弦AB的长。小结
直径平分弦直径垂直于弦=>
直径平分弦所对的弧直径垂直于弦直径平分弦(不是直径)直径平分弦所对的弧直径平分弧所对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《2025跨国租赁合同的附件》
- 2025承诺担保合同
- 2025瓷砖铺设合同范本
- 音乐教育的魅力
- 引领创新 家居先锋
- 2025农民林地流转合同
- 《2025网络招标代理服务合同》
- 2025肉牛交易合同模板
- 家装工艺培训课件
- 《呼吸道疾病与沐舒坦》课件
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 与幼儿园相关的法律知识及案例(课堂PPT)
- 《昆明机床企业财务造假的案例分析(论文)3200字》
- 玻璃水汽车风窗玻璃清洗剂检验报告单
- 机动车驾驶人考试场地及其设施设置规范-
- DB37-T 2673-2019 医疗机构能源消耗定额标准-(高清版)
- 2023届毕业论文格式要求(福建农林大学)
- 玻璃工艺学:第8章 玻璃的熔制
- 黄元御“下气汤十二方”治诸多内科杂病疑难重症
- 肝硬化-本科授课课件
- 《蒋勋眼中的宋词》阅读练习及答案
评论
0/150
提交评论