版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市长安镇学区联校高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)是定义在R上的奇函数,满足.当时,f(x)=ln(x2﹣x+1),则函数f(x)在区间[0,6]上的零点个数是()A.3B.5C.6D.9参考答案:D略2.已知角的终边均在第一象限,则“”是“”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:D略3.设变量x、y满足约束条件,则的最大值为(
)A.22
B.20
C.18
D.16参考答案:C由约束条件作出可行域如图,联立解得B(3,4).由图可知,当目标函数过B时z有最大值.z=2×3+3×4=18.4.若方程在(-1,1)上有实根,则的取值范围为(
)A.
B.
C.
D.参考答案:C5.已知函数,对任意的正数x,f(x)≥0恒成立,则m的取值范围是A.
B.
C.
D.参考答案:A6.在△ABC中,点P在BC上,且,点Q是AC的中点,若,,则=()A.(﹣2,7)B.(﹣6,21)C.(2,﹣7)D.(6,﹣21)参考答案:B略7.一个简单几何体的三视图如图所示,其中正视图是等腰直角三角形,俯视图是边长为2的等边三角形,则该几何体的体积等于(
)A.2
B.
C.
D.参考答案:A8.已知复数z=1+2i,则z?=()A.3﹣4i B.5+4i C.﹣3 D.5参考答案:D【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:z?=(1+2i)(1﹣2i)=12+22=5.故选:D.9.(理科)设,且中所有项的系数和为,则
的值为
(
)
A.2
B.
C.
D.-2
参考答案:A略10.设复数,,若为实数,则的值为(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.
.参考答案:答案:解析:12.不等式的解集为__________.参考答案:13.函数f(x)满足下列性质:(1)定义域为R,值域为[1,+∞).(2)图象关于对称.(3)对任意,,且,都有.请写出函数f(x)的一个解析式__________(只要写出一个即可).参考答案:【分析】根据二次函数的对称性、值域及单调性可得一个符合条件的函数式.【详解】由二次函数的对称性、值域及单调性可得解析式,此时对称轴为,开口向上,满足(2),因为对任意,,且,都有,等价于在上单调减,∴,满足(3),又,满足(1),故答案为.【点睛】本题主要考查二次函数的对称性、二次函数的单调性以及二次函数的值域,意在考查综合运用所学知识,灵活解答问题的能力,考查了转化与划归思想、数形结合思想的应用,属于难题.14.已知点A(1,2),点P()满足,O为坐标原点,则的最大值为
参考答案:5:,作出可行区域如图,作直线,当移到过A(1,2)时,15.(06年全国卷Ⅰ)设,式中变量满足下列条件,则z的最大值为_____________。参考答案:答案:11解析:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足的最大值是点C,代入得最大值等于11.16.已知函数则满足不等式的的取值范围是
.参考答案:
【知识点】函数的单调性与最值.B3解析:由题意可得1)或2),由1)可得-1<x<0,由2)可得,综上可得,实数x的取值范围为.【思路点拨】主要考查了一元二次不等式的解法,体现了分类讨论的数学思想.17.已知定义在R的奇函数满足,且时,,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号
.参考答案:①④由得,所以函数的周期是8.又函数为奇函数,所以由,所以函数关于对称。同时,即,函数也关于对称,所以③不正确。又,函数单调递增,所以当函数递增,又函数关于直线对称,所以函数在[-6,-2]上是减函数,所以②不正确。,所以,故①正确。若,则关于的方程在[-8,8]上有4个根,其中两个根关于对称,另外两个关于对称,所以关于对称的两根之和为,关于对称的两根之和为,所以所有根之后为,所以④正确。所以正确的序号为①④。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色的单车的投放比例为2:1.监管部门为了了解两种颜色的单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同.(1)求抽取的5辆单车中有2辆是蓝色颜色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机地抽取一辆送技术部门作进一步抽样检测,并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机地抽取下一辆单车,并规定抽样的次数最多不超过n()次.在抽样结束时,已取到的黄色单车以表示,求的分布列和数学期望.参考答案:(1).(2)见解析.试题分析:(1)设表示“抽取的5辆单车中蓝颜色单车的个数”,则~,可求5辆单车中有2辆是蓝颜色单车的概率.(2)ξ的可能取值为:0,1,2,…,.并且有,,,……,,
.可得ξ的分布列及的数学期望,再由错位相减法求解即可.试题解析:(1)因为随机地抽取一辆单车是蓝色单车的概率为,用表示“抽取的5辆单车中蓝颜色单车的个数”,则服从二项分布,即~,所以抽取的5辆单车中有2辆是蓝颜色单车的概率.(2)ξ的可能取值为:0,1,2,…,.,,,……,,
.所以ξ的分布列为:ξ012…………
的数学期望为:,
①.
②①-②得:,.所以.点睛:数学期望,方差是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平和离散程度.求解离散型随机变量的分布列、数学期望,方差时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望和方差.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图所示,在棱长为2的正方体中,,分别为线段,的中点.(1)求三棱锥的体积;(2)求异面直线与所成的角.参考答案:解:(1)在正方体中,∵是的中点,∴,
………………3分又平面,即平面,故,所以三棱锥的体积为.………………6分(2)连,由、分别为线段、的中点,可得∥,故即为异面直线与所成的角.
…8分∵平面,平面,∴,在△中,,,∴,∴.所以异面直线EF与所成的角为.
…………12分
略20.等差数列{an}中,其前n项和为Sn,且,等比数列{bn}中,其前n项和为Tn,且,(n∈N*)(1)求an,bn;(2)求{anbn}的前n项和Mn.参考答案:【考点】数列的求和;等差数列的通项公式.【分析】(1)法1:利用等差数列的前3项求出公差与首项,再利用通项公式即可得出.法2:利用递推关系与等差数列的通项公式即可得出.(2)法1:利用分组求和即可得出.法2:利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)法1:由,a1=1…又,所以a2=3或﹣1因为a2=﹣1时,=1,故a2=﹣1舍去…所以等差数列{an)的公差d=a2﹣a1=2∴an=2n﹣1,…同样可得b1=1,b2=3或﹣1因为b2=3时,,故b2=3舍去又{bn}为等比数列,所以…法2:,a1=1…1分,,(n≥2)(an﹣an﹣1)(an+an﹣1)﹣2(an+an﹣1)=0…(an﹣an﹣1﹣2)(an+an﹣1)=0,因为{an}为等差数列,所以an﹣an﹣1﹣2=0,又a1=1∴an=2n﹣1,…又{bn}为等比数列,所以易得…(2)法一:Mn=a1?b1+a2?b2+…+an?bn=1﹣3+5﹣7+…+(﹣1)n﹣1(2n﹣1)若n为偶数,则Mn=所以Mn=﹣n…若n为奇数,则结合上边情况可得Mn=﹣(n﹣1)+(2n﹣1)=n综上可得Mn=(﹣1)n﹣1?n…法二:Mn=1×(﹣1)0+3×(﹣1)1+5×(﹣1)2+…+(2n﹣1)×(﹣1)n﹣1…①﹣Mn=1×(﹣1)1+3×(﹣1)2+5×(﹣1)3+…+(2n﹣1)×(﹣1)n…②①﹣②得:2Mn=1+2×(﹣1)1+2×(﹣1)2+2×(﹣1)3+…+2×(﹣1)n﹣1﹣(2n﹣1)×(﹣1)n﹣﹣2Mn=Mn=n×(﹣1)n﹣1﹣﹣﹣﹣﹣﹣﹣﹣21.已知直线l的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设M(﹣1,),直线l与圆C相交于点A,B,求|MA||MB|.参考答案:考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)由圆C的极坐标方程为ρ=2cosθ,变为ρ2=2ρcosθ,把代入即可得出;(II)把直线l的参数方程为参数),代入圆的方程可得=0,利用|MA||MB|=t1t2即可得出.解答: 解:(I)由圆C的极坐标方程为ρ=2cosθ,变为ρ2=2ρcosθ,化为x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46807-2025冷冻饮品术语
- 2026年医疗行业失信惩戒合同
- 2026年节能改造合同
- 2025年上饶市广信区人民法院公开招聘劳务派遣工作人员14人备考题库及答案详解一套
- 2026年海峡两岸国际象棋合作委员会合作协议
- 2026年教育会展活动展位销售合同
- 快递公司春节放假通知
- 2025年凉山彝族自治州普格县公安局公开招聘警务辅助人员的备考题库带答案详解
- 2025年上杭辅警招聘真题及答案
- 黑龙江公安警官职业学院《英语词汇学》2025 学年第二学期期末试卷
- 2025年山西大地环境投资控股有限公司社会招聘116人备考题库有答案详解
- 2026元旦主题晚会倒计时快闪
- 物理试卷答案浙江省9+1高中联盟2025学年第一学期高三年级期中考试(11.19-11.21)
- 2025年交管12123学法减分考试题附含答案
- 2025至2030中国3D生物印刷行业调研及市场前景预测评估报告
- 口腔解剖生理学牙的一般知识-医学课件
- 2026年1月辽宁省普通高中学业水平合格性考试地理仿真模拟卷01(考试版)
- 酒店股权转让合同范本
- 关于某某脑机接口数据采集与使用知情同意书
- 绿盟科技安全培训内容课件
- 安生生产法规定
评论
0/150
提交评论