加减法的意义和各部分间的关系教学设计范文_第1页
加减法的意义和各部分间的关系教学设计范文_第2页
加减法的意义和各部分间的关系教学设计范文_第3页
加减法的意义和各部分间的关系教学设计范文_第4页
加减法的意义和各部分间的关系教学设计范文_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

加减法的意义和各部分间的关系教学设计范文作为一名教师,编写教学设计是必不可少的,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写呢?以下是小编为大家收集的加减法的意义和各部分间的关系教学设计范文,希望对大家有所帮助。加减法的意义和各部分间的关系教学设计1教学目标1.使学生理解加法的意义,并会应用解答实际问题.2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性.3.使学生理解并掌握加法交换律并能运用这一定律进行验算.加法的意义教学设计意义的建立,加法交换律的概括及对它们的理解、掌握.教学难点学生对加法意义、加法交换律运用.教学步骤一、复习.1、口算.44+5637+23180+2042+8+1012+00+17386+124124+2352、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.二、探究新知.(一)教学加法的意义.1、加法的意义.(1)例1一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?教师提问:这题怎样解答?(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?(板书:两个数合并成一个数的运算就叫加法)教师明确:这就叫加法的意义.(板书:加法的意义)(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的运算,所以这道题要用加法计算.2、加法等式中各部分名称.教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数加数和)3、有关0的加法.教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有哪几种情况呢?小结:任何数和0相加都得原数.(二)教学加法交换律1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的`计算将起到很大的作用.2、教师提问:137+357=494(千米),表示求的是什么?如果要求济南到北京的铁路长又该怎样列式计算呢?357+137=494(千米)3、引导学生观察,比较两种解法的结果.教师板书:137+357=357+134、出示例2,引导学生归纳规律.18+17○17+18124+235○235+1240+25○25+0规律:①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置.②每个等式中,左右两边的加数的和相等.教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?9+7=7+910+1=10+120+8=2+262+0=0+26、用字母表示加法交换律.教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(教师领读几遍,提醒学生不要按汉语拼音来读)教师板书:a+b=b+a提醒注意:a与b可以表示0、1、2、3、??中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变.7、学生分组自由举例说明加法交换律.8、学习、掌握了加法的交换律,目的在于更好地运用.实际上,在以前我们早就应用它解决计算问题.同学们想一想:在哪些计算中都用了加法交换律呢?(验算)9、练习:运用加法交换律,在下面的□里填上适当的数.766+589=589+□257+□=474+257a+15=15+□三、巩固发展.1、填空.(1)把()数合并成()数的运算叫做加法.(2)一个数加0,还得().如12+0=().2、下面各等式哪些符合加法交换律?符合的画“√”.230+370=380+22030+50+40=50+30+40a+10=100+a230+420=430+220四、课堂小结.今天我们学习了加法的意义和加法的一个运算定律——加法交换律.谁能结合具体的题目说一说的含义?(学生讨论)五、布置作业.1、根据运算定律在下面的□填上适当的数.48+□=72+□29+35=□+29a+38=□+□□+55=55+422、口算下面各题,说一说是怎样应用运算定律的.91+89+1185+41+15+59168+250+32282+53+37+18六、板书设计加法的意义和运算定律例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?137+357=494(千米)357+137=494(千米)答:北京到济南的铁路长494千米.意义:把两个数合并成一个数的运算叫做加法.7+0=70+7=70+0=0例2加法交换律:137+357=357+13718+17=17+1824+235=235+24加减法的意义和各部分间的关系教学设计2教学目标:1.通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。2.在经历探索发现加与减的互逆关系及加、减法各部分之间的关系。3.运用加、减法关系解决简单的实际问题。教学过程:一、谈话导入你们有好朋友吗?加法和减法是一对好朋友,他们之间会有怎样的秘密呢,这节课我们就一起来探索,根据你以前学过的知识,你觉得它们会有怎样的关系?学生猜想后简单回馈交流后板书课题:加、减法的意义和各部分之间的关系二、互动新授(1)教学加法的意义课件出示教材第2页例一情境图师:认真读一读题目,你知道西宁到拉萨的铁路长多少千米吗?如果要用线段图的形式表示它们之间的关系,你能画出来吗?怎样列式计算呢?学生绘制并进行展示,思考后独立列式:814+1142=1956(千米)师:结合加法算式,说说这道加法算式表示什么意义?你觉得加法是一种什么样的运算?师肯定学生的回答,并小结:把两个数合并成一个数的算式,叫做加法。师:你知道加法各部分的名称吗?交流后明确:相加的两个数叫做加数,加得的数叫做和。(2)教学减法的意义课件出示教材第3页第(2)(3)小题引导学生分析数量关系,并列式计算指名板演,并说一说为什么用减法计算。师:观察并比较一下,第(2)(3)题与第(1)题有什么关系,第(2)(3)题都是分别已知了什么?求什么?怎样算?启发学生:第(1)题是已知两个加数,求它们的和用加法。第(2)(3)题都是已知两个数的和与其中一个加数,求另一个加数,用减法。想一想,减法是什么样的运算?教师情调说明:减法是已知两个数的和与其中一个加数,求另一个加数的运算(3)教学加减法各部分名称师:在减法中,已知的和叫什么?减去的已知加数叫做什么?求出的未知数叫做什么?引导学生明确,在减法中,已知的和叫做被减数,减去的已知加数叫做减数,求出的未知数叫做差。2.探索加、减法各部分之间的关系(1)加法各部分之间的关系。师:在前面,我们已经理解了加法和各部分之间的关系,那谁能来说一说加法各部分之间的关系?汇报;加法各部分之间的最基本的关系是:和=加数+加数(板书)知道和和其中一个加数,求另一个加数,关系式是:加数=和—另一个加数(板书)(2)减法各部分之间的关系减法各部分之间又有什么关系呢?汇报:减法各部分间最基本的关系是:差=被减数-减数(板书)如果知道被减数和差,求减数是:减数=被减数-差(板书)如果知道减数和差,求被减数是:被减数=减数+差(板书)师:通过刚才几个算式的比较,你能用一句话来概括加减法之间的关系吗?小结得出:减法是加法的逆运算,并引导学生理解逆运算中的“逆”的意思。三、巩固拓展四、课堂小结通过这节课,你有哪些收获?加减法的意义和各部分间的关系教学设计3学习目标:1.使学生在具体的情境与问题中,经历概括总结加、减法意义的过程,理解加、减法的意义。2.引导组织学生自主观察、比较概括,掌握加、减法各部分之间的关系,体会减法是加法的逆运算。2.使学生在探索新知过程中,培养抽、概况、比较的能力。学习重点:加、减法意义及各部分名称与关系的认知理解。学习难点:加、减法意义理解,体会减法是加法的逆运算。学习活动过程:一、情景导入今天我们一起去看看中国人盼了一百年的铁路,是一条行走在世界屋脊上的天路—青藏铁路。号称中国新世纪四大工程之一,是通往西藏腹地的第一条铁路。他创造了许多世界之最,是世界上海拔最高、线路最长的高原铁路。二、探究新知1.加法的意义和各部分的名称。(1)提出问题,解决问题。仔细观察地图,发现哪些数学信息?并提出一个实际问题?西宁到拉萨的铁路长多少千米?请尝试列式。814+1142=1956(2)概括加法的意义。思考:为什么用加法计算?什么样的运算叫做加法?(把两个数合并成一个数的运算,叫做加法。)回忆:在加法算式中各部分的名称是什么?2.减法的意义和各部分的名称。(1)出示例1第二小题和第三小题题,进行解答试着解决这两道题,看看谁的速度快?(2)对比概括减法的意义。这三个问题有什么联系?与第(1)题相比,第(2)(3)题分别是已知什么?求什么?请你再观察三个算式,你发现有什么联系?想一想什么样的运算叫做减法呢?(已知两个数的和与其中一个加数,求另一个加数的运算叫做减法。)(3)减法各部分的名称。回忆:减法各部分的名称是什么?(4)加、减法的逆运算。请再次观察这三个算式,你有什么发现?这三道题的计算和减法的意义可以看出,减法运算是加法运算,相反的运算,相反的运算在数学中叫做逆运算,所以说减法是加法的逆运算。3.教学加、减法各部分之间的关系。4.想一想加数加数与和之间有什

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论