




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数在的图象大致为A. B.C. D.2.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}3.函数单调递增区间为A. B.C D.4.已知函数,若则a的值为(
)A. B.C.或 D.或5.为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38 B.0.61C.0.122 D.0.756.已知定义在R上的函数,(e为自然对数的底数,),则()A.3 B.6C.3e D.与实数m的取值有关7.命题:的否定为()A. B.C. D.8.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或9.函数的单调递减区间是A. B.C. D.10.已知角与角的终边关于直线对称,且,则等于()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在中,已知是延长线上一点,若,点为线段的中点,,则_________12.若函数,则_________;不等式的解集为__________13.在中,,则_____________14.函数在______单调递增(填写一个满足条件的区间)15.若点在函数的图象上,则的值为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.化简求值(1);(2).17.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点()求四棱锥的体积()求证:平面平面()在线段上确定一点,使平面,并给出证明18.设,,.(1)若,求;(2)若是的充分不必要条件,求的取值范围.19.(1)若是的根,求的值(2)若,,且,,求的值20.某高校的入学面试中有3道难度相当的题目,李明答对每道题的概率都是0.6,若每位面试者都有三次机会,一旦答对抽到的题目,则面试通过,否则就一直抽题到第三次为止.用Y表示答对题目,用N表示没有答对的题目,假设对抽到的不同题目能否答对是独立的,那么:(1)在图的树状图中填写样本点,并写出样本空间;(2)求李明最终通过面试的概率.21.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】当时,,去掉D;当时,,去掉B;因为,所以去A,选C.点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B3、A【解析】,所以.故选A4、D【解析】按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍即可.令,则或,解之得.【点睛】本题主要考查分段函数,属于基础题型.5、B【解析】利用频率组距,即可得解.【详解】根据频率分布直方图可知,质量指标值在内的概率故选:B6、B【解析】可证,从而可得正确的选项.【详解】因为,故,故,故选:B7、B【解析】根据全称命题的否定是特称命题判断可得.【详解】解:命题:为全称量词命题,其否定为;故选:B8、C【解析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C9、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质10、A【解析】先在角终边取一点,利用角与角的终边关于直线对称写出对称点的坐标,即可求得,进而求得.【详解】由知角终边在第一或第二象限,在终边上取一点或,又角与角的终边关于直线对称,故角的终边必过点或,故,则.故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题12、①.②.【解析】代入求值即可求出,分与两种情况解不等式,最后求并集即可.【详解】,当时,,所以,解得:;当时,,解得:,所以,综上:.故答案为:,13、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题14、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)15、【解析】将点代入函数解析式可得的值,再求三角函数值即可.【详解】因为点在函数的图象上,所以,解得,所以,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)109;(2).【解析】(1)利用指数幂运算和分数指数幂与根式的转化,化简求值即可;(2)利用对数运算性质化简求值即可.【详解】解:(1)原式;(2)原式.17、(1)(2)见解析(3)当为线段的中点时,满足使平面【解析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面试题解析:()解:∵平面,∴()证明:∵,分别是,的中点∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:当为线段中点时,满足使平面,下面给出证明:取的中点,连接,,∵,∴四点,,,四点共面,由平面,∴,又,,∴平面,∴,又为等腰三角形,为斜边中点,∴,又,∴平面,即平面点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.18、(1)或;(2).【解析】(1)先得出集合A,利用并集定义求出,再由补集定义即可求出;(2)由题可得集合是集合的真子集,则可列出不等式组求出.【详解】解:(1)当时,,又,所以,所以或;(2)由是的充分不必要条件,可知集合是集合的真子集.又因为,,,所以,解得,当时,,符合要求;当时,,符合要求,所以实数的取值范围是.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含19、(1);(2)【解析】(1)先求出,再通过诱导公式及切化弦化简原式后再代值即可;(2)通过角的范围及已知的三角函数值求出和,再运用正弦的两角差的公式计算即可.【详解】(1)方程解得或,因为为其解,所以.则原式由于,所以原式.(2)因为,所以,又因为,所以,因为,,可得,又,可得,而.20、(1)(2)【解析】(1)根据树状图表示出样本空间;(2)先计算李明未通过面试的概率,再由对立事件的计算公式求出通过面试的概率.【小问1详解】由题意,样本空间为.样本点的填写如图所示,【小问2详解】可知李明未通过面试的概率为,所以李明通过面试的概率为21、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院安全管理智能化发展之路探讨与实践经验分享
- 礼仪教育十月份工作总结模版
- 小儿中医特色护理课件
- 人工智能技术如何重塑健康保险行业的诊疗体验
- 2025年消费者权益保护工作总结模版
- 企业顶岗锻炼总结模版
- 以人为本智能医疗办公室的空间设计思考
- 医学伦理与法律责任的交织
- 2025-2030年肥仔柄牛排刀项目投资价值分析报告
- 2025-2030年石斑鱼肉项目商业计划书
- 心肺复苏后的亚低温治疗
- 武汉市农村土地承包经营权转包出租合同
- 小学数学-课前三分钟.ppt
- 钢纤维混凝土检查井盖J
- 上海市节能评审和节能评估文件编制费用收费标准
- 河北省初中生综合素质评价实施
- 各种液体粘度表
- 德国化学成分牌号与DIN17007系统的数字材料号对照表[1]
- 完整版,加工贸易手册核销
- 22-1附件1:国家电网公司班组建设管理标准
- 马云-冬天的使命原稿
评论
0/150
提交评论