版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式成立的是()A. B.C. D.2.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.143.已知点,则向量()A. B. C. D.4.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}5.已知,,,则,,的大小关系为()A. B. C. D.6.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.157.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°8.已知直线与平行,则等于()A.或 B.或 C. D.9.为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为()A. B. C. D.10.同时掷两枚骰子,所得点数之和为5的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.12.设为,的反函数,则的值域为______.13.记等差数列的前项和为,若,则________.14.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.15.设函数的最小值为,则的取值范围是___________.16.已知角终边经过点,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.18.如图,正方体的棱长为2,E,F分别为,AC的中点.(1)证明:平面;(2)求三棱锥的体积.19.正四棱锥的侧棱长与底面边长都相等,为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.20.已知数列的前项和为.(1)求这个数列的通项公式;(2)若,求数列的前项和.21.在中,内角,,的对边分别为,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求边的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.2、B【解析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.3、D【解析】
利用终点的坐标减去起点的坐标,即可得到向量的坐标.【详解】∵点,,∴向量,,.故选:D.【点睛】本题考查向量的坐标表示,考查运算求解能力,属于基础题.4、C【解析】
根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.5、D【解析】
利用指数函数、对数函数的单调性直接求解.【详解】解:因为,,所以,,的大小关系为.故选:D.【点睛】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.6、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.7、B【解析】
直接利用正弦定理计算得到答案.【详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.8、C【解析】
由题意可知且,解得.故选.9、C【解析】试题分析:由题意知,分段间隔为,故选C.考点:本题考查系统抽样的定义,属于中等题.10、C【解析】
求出基本事件空间,找到符合条件的基本事件,可求概率.【详解】同时掷两枚骰子,所有可能出现的结果有:共有36种,点数之和为5的基本事件有:共4种;所以所求概率为.故选C.【点睛】本题主要考查古典概率的求解,侧重考查数学建模的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【点睛】本题主要考查余弦定理以及韦达定理,属于中档题.12、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.13、10【解析】
由等差数列求和的性质可得,求得,再利用性质可得结果.【详解】因为,所以,所以,故故答案为10【点睛】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.14、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.15、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16、4【解析】
根据任意角的三角函数的定义,结合同角三角函数的基本关系求解即可.【详解】因为角终边经过点,所以,因此.故答案为:4【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.72;(2)【解析】
(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【点睛】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的求解,其中解答中利用公式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)证明见解析;(2)【解析】
(1)可利用线线平行来证明线面平行(2)可采用等体积法进行求解【详解】证明:(1)如图,连结BD;因为四边形ABCD为正方形,所以BD交AC于F且F为BD中点;又因为E为中点,所以;因为平面,平面,所以平面;(2)三棱锥的体积.【点睛】本题考查了线面平行的证明及锥体体积的求解方法,证线面平行一般是通过证线线平行来证明,三棱锥的体积常用等体积法转换底面和高进行求解.19、(1)证明见解析;(2)【解析】
(1)连接交于,连接,再证明即可.(2)根据(1)中的可知异面直线与所成角的为,再计算的各边长分析出为直角三角形,继而求得即可.【详解】(1)连接交于,连接.则为中点因为分别为中点,故为中位线,故.又面,面.故平面.(2)由(1)有异面直线与所成角即为与所成角即,设正四棱锥的各边长均为2,则,,.因为,故.则.即异面直线与所成角的余弦值为【点睛】本题主要考查了线面平行的证明以及异面角的余弦求解,需要根据题意找到中位线证明线面平行,同时要将异面角利用平行转换为平面角,利用三角形中的关系求解.属于基础题.20、(1)(2)【解析】
(1)当且时,利用求得,经验证时也满足所求式子,从而可得通项公式;(2)由(1)求得,利用错位相减法求得结果.【详解】(1)当且时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防日培训教学课件
- 2026年大数据时代数据处理与分析习题集
- 2026年注册测量师基础概念与案例分析模拟题
- 2026年医学C证考试病理学知识点测试题
- 2026经济师考试经济理论与应用题库
- 2026年健康教育与健康管理测试题
- 包装制作材料培训课件
- 提升患者满意度路径
- 2026年数据库系统分析与设计考试指南
- 探索劳动教育
- 2026年苏州工业职业技术学院单招职业技能测试题库新版
- 正确停车课件
- 2025年度呼吸内科护士长述职报告
- GB/T 5783-2025紧固件六角头螺栓全螺纹
- FGR遗传病因的精准筛查策略
- 护患沟通技巧与冲突处理策略
- 《大连医科大学研究生学位论文书写规范》
- 二十届四中全会测试题及参考答案
- 蒸镀相关知识培训总结
- 按摩禁忌课件
- 代建工程安全管理
评论
0/150
提交评论