




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则下列不等式中正确的是()A. B. C. D.2.函数的最大值为()A. B. C. D.3.直线的倾斜角为()A. B. C. D.4.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.5.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.286.计算的值为().A. B. C. D.7.在钝角中,角的对边分别是,若,则的面积为A. B. C. D.8.若样本的平均数为10,其方差为2,则对于样本的下列结论正确的是A.平均数为20,方差为8 B.平均数为20,方差为10C.平均数为21,方差为8 D.平均数为21,方差为109.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.5010.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象与直线恰有两个不同交点,则m的取值范围是________.12.在△ABC中,sin2A=sin13.若数列的首项,且(),则数列的通项公式是__________.14.过点且与直线l:垂直的直线方程为______.(请用一般式表示)15.实数x、y满足,则的最大值为________.16.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,设其最小值为(1)求;(2)若,求a以及此时的最大值.18.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?20.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.21.动直线m:3x+8y+3λx+λy+21=0(λ∈R)过定点M,直线l过点M且倾斜角α满足cosα,数列{an}的前n项和为Sn,点P(Sn,an+1)在直线l上.(1)求数列{an}的通项公式an;(2)设bn,数列{bn}的前n项和Tn,如果对任意n∈N*,不等式成立,求整数k的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。2、D【解析】
函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.3、C【解析】
求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.4、C【解析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,
则
又三点共线,故得.
故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.5、C【解析】
可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.6、D【解析】
利用诱导公式以及特殊角的三角函数值可求出结果.【详解】由诱导公式可得,故选D.【点睛】本题考查诱导公式求值,解题时要熟练利用“奇变偶不变,符号看象限”基本原则加以理解,考查计算能力,属于基础题.7、A【解析】
根据已知求出b的值,再求三角形的面积.【详解】在中,,由余弦定理得:,即,解得:或.∵是钝角三角形,∴(此时为直角三角形舍去).∴的面积为.故选A.【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、A【解析】
利用和差积的平均数和方差公式解答.【详解】由题得样本的平均数为,方差为.故选A【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】
求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.10、A【解析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
化简函数解析式为,做出函数的图象,数形结合可得的取值范围.【详解】解:因为所以,,由,可得,则函数,的图象与直线恰有两个不同交点,即方程在上有两个不同的解,画出的图象如下所示:依题意可得时,函数的图象与直线恰有两个不同交点,故答案为:【点睛】本题主要考查正弦函数的最大值和单调性,函数的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.12、π【解析】
根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.13、【解析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,14、【解析】
与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.15、【解析】
根据约束条件,画出可行域,将目标函数化为斜截式,找到其在轴截距的最大值,得到答案.【详解】由约束条件,画出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最大,联立,解得,即,所以.故答案为:.【点睛】本题考查线性规划求最大值,属于简单题.16、①③【解析】
根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】
(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况、和讨论,根据二次函数求最小值的方法求出的最小值的值即可;(2)把代入到第一问的的第二和第三个解析式中,求出的值,代入中得到的解析式,利用配方可得的最大值.【详解】(1)由题意,函数∵,∴,若,即,则当时,取得最小值,.若,即,则当时,取得最小值,.若即,则当时,取得最小值,,∴.(2)由(1)及题意,得当时,令,解得或(舍去);当时,令,解得(舍去),综上,,此时,则时,取得最大值.【点睛】本题主要考查了利用二次函数的方法求三角函数的最值,要求熟练掌握余弦函数图象与性质,其中解答中合理转化为二次函数的图象与性质进行求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.18、(1)见解析;(2)【解析】
(1)不等式可化为:,比较与的大小,进而求出解集.(2)恒成立即恒成立,则,进而求得答案.【详解】解:(1)不等式可化为:,①当时,不等无解;②当时,不等式的解集为;③当时,不等式的解集为.(2)由可化为:,必有:,化为,解得:.【点睛】本题考查含参不等式的解法以及恒成立问题,属于一般题.19、(1)﹒(2)时,最大车流量辆.【解析】
(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.20、(1)周期,值域为;(2).【解析】
(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【点睛】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题.21、(1)an=6•(﹣1)n﹣1;(1)最大值为1.【解析】
(1)由直线恒过定点可得M(1,﹣3),求得直线l的方程,可得an+6=1Sn,运用数列的递推式和等比数列的通项公式,可得所求;(1)bn•(﹣1)n﹣1,讨论n为偶数或奇数,可得Tn,再由不等式恒成立问题解法,可得所求k的范围,可得最大值.【详解】(1)3x+8y+3λx+λy+11=0即为(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直线l的斜率为tanα1,即直线l的方程为y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,当n=1时,可得a1+6=1S1=1a1,即a1=6,n≥1时,an﹣1+6=1Sn﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长尾关键词2025年环保政策对塑料制品行业市场环保政策应对策略研究报告
- 2025年跨文化交流能力培养在国际化教育中的跨文化能力培养路径
- 黑龙江省龙东联盟2024-2025学年高一下学期期末考试化学试题(图片版含答案)
- 全国安全员证考试题型及答案
- 三级安全教育试题及答案车间级
- 数据库期末考试试题及答案
- 典当程序管理办法
- 养老入住管理办法
- 兽药饲料管理办法
- 内江招生管理办法
- 气道阻塞急救处理方法
- 矿山环境修复新材料-洞察及研究
- 2025年陕西高考化学试卷试题真题及答案详解(山西宁夏青海适用)
- 2024年全国中学生生物学联赛(山东赛区)预赛试题
- JG/T 289-2010混凝土结构加固用聚合物砂浆
- DB37/T 3657-2019地质灾害治理工程设计技术规范
- 森林管护工技师考试试题及答案
- 医学项目伦理审查汇报
- 高空坠物专项施工方案
- 委托清欠合同协议
- 2025房屋租赁合同模板打印
评论
0/150
提交评论