版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=sin2x的图象可由函数A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π62.已知平面四边形满足,,,则的长为()A.2 B. C. D.3.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.14.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.305.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+16.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.7.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.8.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.9.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,E,F分别是PA,AB的中点,∠CEF=90°.则球O的体积为()A. B. C. D.10.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________12.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.13.已知均为正数,则的最大值为______________.14.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____15.两圆,相切,则实数=______.16.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的各项均为正数,,的前项和为,为等比数列,,且.(1)求与;(2)求数列的前项和.18.在平面直角坐标系中,已知射线与射线,过点作直线l分别交两射线于点A、B(不同于原点O).(1)当取得最小值时,直线l的方程;(2)求的最小值;19.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.20.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.21.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接利用函数图象平移规律得解.【详解】函数y=sin2x-π可得函数y=sin整理得:y=故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。2、B【解析】
先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【点睛】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.3、D【解析】
由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.4、B【解析】
由分层抽样方法即按比例抽样,运算即可得解.【详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【点睛】本题考查了分层抽样方法,属基础题.5、D【解析】
利用算法的定义来分析判断各选项的正确与否,即可求解,得到答案.【详解】由算法的定义可知,算法、程序是完成一件事情的可操作的步骤:可得A、B、C为算法,D没有明确的规则和步骤,所以不是算法,故选D.【点睛】本题主要考查了算法的概念,其中解答的关键是理解算法的概念,由概念作出正确的判断,着重考查了分析问题和解答问题的能力,属于基础题.6、C【解析】
将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【点睛】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.7、A【解析】
求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.8、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.9、D【解析】
计算可知三棱锥P-ABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【详解】在△PAC中,设,,,,因为点E,F分别是PA,AB的中点,所以,在△PAC中,,在△EAC中,,整理得,因为△ABC是边长为的正三角形,所以,又因为∠CEF=90°,所以,所以,所以.又因为△ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.10、D【解析】
从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】四棱锥的侧面积是12、【解析】
点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【点睛】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.13、【解析】
根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【点睛】本题考查了重要不等式,把变形为是解题的关键.14、【解析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【点睛】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.15、0,±2【解析】
根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.16、1【解析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】试题分析:(1)的公差为,的公比为,利用等比数列的通项公式和等差数列的前项和公式,由列出关于的方程组,解出的值,从而得到与的表达式.(2)根据数列的特点,可用错位相减法求它的前项和,由(1)的结果知,两边同乘以2得由(1)(2)两式两边分别相减,可转化为等比数列的求和问题解决.试题解析:(1)设的公差为,的公比为,则为正整数,,依题意有,即,解得或者(舍去),故.4分(2).6分,,两式相减得8分,所以12分考点:1、等差数列和等比数列;2、错位相减法求特数列的前项和.18、(1);(2)6.【解析】
(1)设,,利用三点共线可得的关系,计算出后由基本不等式求得最小值.从而得直线方程;(2)由(1)中所设坐标计算出,利用基本不等式由(1)中所得关系可得的最小值,从而得的最小值.【详解】(1)设,,因为A,B,M三点共线,所以与共线,因为,,所以,得,即,,等号当且仅当时取得,此时直线l的方程为.(2)因为由,所以,当且仅当时取得等号,所以当时,取最小值6.【点睛】本题考查直线方程的应用,考查三点共线的向量表示,考查用基本不等式求最值.用基本不等式求最值时要根据目标函数的特征采取不同的方法,如(1)中用“1”的代换配凑出基本不等式的条件求得最值,(2)直接由已知应用基本不等式求最值.19、(1);(2)证明见解析;(3).【解析】
(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【点睛】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.20、(1)a+b=2;(2)(5,-3).【解析】
(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026重庆两江新区人民医院招聘4人考试参考题库及答案解析
- 2026遂宁大英农商银行寒假实习生招聘考试参考试题及答案解析
- 2026江苏苏州张家港农商银行寒假实习招募考试备考题库及答案解析
- 2026云南西双版纳州中级人民法院第一次招聘聘用制审判辅助人员1人考试备考题库及答案解析
- 2026江苏中国药科大学智能药学交叉研究院工作人员招聘5人考试备考试题及答案解析
- 2026年甘肃省天水市清水县秦亭镇中心卫生院编外人员招录考试备考题库及答案解析
- 2026年齐齐哈尔讷河市人民医院招聘3人考试备考题库及答案解析
- 2026陆军工程大学社会招聘8人考试参考题库及答案解析
- 2026年甘肃省承仁中医药研究所诚聘医护20人考试备考题库及答案解析
- 2026湖南岳阳市屈原管理区数据局编外人员招聘2人考试参考试题及答案解析
- 种鸡免疫工作总结
- 河南省商丘市柘城县2024-2025学年八年级上学期期末数学试题(含答案)
- 教育机构财务管理制度及报销流程指南
- 给女朋友申请书
- 2023-2024学年北京市海淀区八年级上学期期末考试物理试卷含详解
- 2024版房屋市政工程生产安全重大事故隐患判定标准内容解读
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 智能法理学习通超星期末考试答案章节答案2024年
- JB∕T 13026-2017 热处理用油基淬火介质
- 人教版高一化学方程式大全
- 长护险护理培训课件
评论
0/150
提交评论