




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.652.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.73.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度4.已知,则向量在方向上的投影为()A. B. C. D.5.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A., B.,C., D.,6.若实数满足,则的大小关系是:A. B. C. D.7.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.108.已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是()A.函数的最小正周期为B.函数的图象关于直线对称C.函数在区间上单调递增D.函数的图像关于点对称9.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.1810.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.12.已知方程的两根分别为、、且,且__________.13.若点,是圆C:上不同的两点,且,则的值为______.14.已有无穷等比数列的各项的和为1,则的取值范围为__________.15.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.16.函数,的递增区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.18.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.19.某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:测试指标甲乙根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:(1)乙生产一件产品,盈利不小于元的概率;(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.20.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.21.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,,判断否,,,判断否,,,判断是,输出.故选.2、B【解析】
分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.3、D【解析】
由图象求得函数解析式的参数,再利用诱导公式将异名函数化为同名函数根据图象间平移方法求解.【详解】由图象可知,又,所以,又因为,所以,所以,又因为,又,所以所以又因为故选D.【点睛】本题考查由图象确定函数的解析式和正弦函数和余弦函数图象之间的平移,关键在于将异名函数化为同名函数,属于中档题.4、B【解析】
根据向量夹角公式求得夹角的余弦值;根据所求投影为求得结果.【详解】由题意得:向量在方向上的投影为:本题正确选项:【点睛】本题考查向量在方向上的投影的求解问题,关键是能够利用向量数量积求得向量夹角的余弦值.5、B【解析】
以作为基底的向量需要是不共线的向量,可以从向量的坐标发现,,选项中的两个向量均共线,得到正确结果是.【详解】解:可以作为基底的向量需要是不共线的向量,中一个向量是零向量,两个向量共线,不合要求中两个向量是,,则故与不共线,故正确;中两个向量是,两个向量共线,项中的两个向量是,两个向量共线,故选:.【点睛】本题考查平面中两向量的关系,属于基础题.6、D【解析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.7、A【解析】
将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。8、C【解析】
本题首先可根据相邻的两个对称中心之间的距离为来确定的值,然后根据直线是对称轴以及即可确定的值,解出函数的解析式之后,通过三角函数的性质求出最小正周期、对称轴、单调递增区间以及对称中心,即可得出结果.【详解】图像相邻的两个对称中心之间的距离为,即函数的周期为,由得,所以,又是一条对称轴,所以,,得,又,得,所以.最小正周期,项错误;令,,得对称轴方程为,,选项错误;由,,得单调递增区间为,,项中的区间对应,故正确;由,,得对称中心的坐标为,,选项错误,综上所述,故选C.【点睛】本题考查根据三角函数图像性质来求三角函数解析式以及根据三角函数解析式得出三角函数的相关性质,考查对函数的相关性质的理解,考查推理能力,是中档题.9、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图10、C【解析】
预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【点睛】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.12、【解析】
由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【点睛】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.13、【解析】
由,再结合坐标运算即可得解.【详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【点睛】本题考查了向量模的运算,重点考查了运算能力,属基础题.14、【解析】
根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.15、5【解析】设一部门抽取的员工人数为x,则.16、[0,](开区间也行)【解析】
根据正弦函数的单调递增区间,以及题中条件,即可求出结果.【详解】由得:,又,所以函数,的递增区间为.故答案为【点睛】本题主要考查正弦型函数的单调区间,熟记正弦函数的单调区间即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因为,得到,.由余弦定理可得.(Ⅱ)由(Ⅰ)可得,从而,.故.【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.18、(1)或;(2).【解析】
(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.【点睛】本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.19、(1);(2)元;(3)【解析】
(1)设事件表示“乙生产一件产品,盈利不小于25元”,即该产品的测试指标不小于80,由此能求出乙生产一件产品,盈利不小于25元的概率.(2)由表格知甲生产的一等品、二等品、三等品比例为即,所以甲一天生产30件产品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生产的一等品、二等品、三等品比例为,所以乙一天生产20件产品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙两人一天共为企业创收1195元.(3)设甲测试指标为,的7件产品用,,,,,,表示,乙测试指标为,的7件产品用,表示,利用列举法能求出两件产品的测试指标差的绝对值大于10的概率.【详解】(1)设事件表示“乙生产一件产品,盈利不小于元”,即该产品的测试指标不小于,则;(2)甲一天生产件产品,其中一等品有件;二等品有件;三等品有件;甲一天生产件产品,其中一等品有件;二等品有件;三等品有,即甲、乙两人一天共为企业创收元;(3)设甲测试指标为的件产品用,,,,表示,乙测试指标为的件产品用,表示,用(,且)表示从件产品中选取件产品的一个结果.不同结果为,,,,,,,,,,,,,,,,,,,,,,共有36个不同结果.设事件表示“选取的两件产品的测试指标差的绝对值大于”,即从甲、乙生产的产品中各取件产品,不同的结果为,,,,,,,,,,,,,,共有个不同结果.则.【点睛】本题主要考查古典概型概率的求法,即按照古典概型的概率计算公式分别求出基本事件总数以及有利事件数即可算出概率,以及列举法和随机抽样的应用.20、(1).(2)【解析】
(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.21、(1)(2)使的面积等于4的点有2个【解析】
(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据助力教育个性化与精准化
- 心理分析与现代教育技术的融合
- 教育与科技的结合教学辅助型教育机器人研究
- 未来教育视域下的技术美学与空间设计
- 品牌数字营销战略下的多平台联动运营策略
- 教育领域的大数据技术应用及未来趋势分析报告
- 全球医药市场2025年创新药物研发管线布局策略报告
- 全球铀矿资源分布特点及2025年核能产业技术创新与产业协同研究报告
- 公交优先战略与2025年城市交通拥堵治理的公共交通优先政策实施保障研究报告
- Carbonic-anhydrase-inhibitor-32-生命科学试剂-MCE
- 2022年剑河县事业单位考试真题及答案
- 电气控制与PLC应用技术(三菱机型)高教版YL-235A送料机构控制电路的连接与编程教学案例高教版
- GB/T 5163-2006烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定
- GB/T 17989.2-2020控制图第2部分:常规控制图
- 建设项目安全设施‘三同时’课件
- 2022语文课程标准:“语言文字积累与梳理”任务群解读及实操
- DB15T 489-2019 石油化学工业建设工程技术资料管理规范
- 内蒙古自治区通辽市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 螺旋溜槽安装标准工艺
- 2022年人教版六年级下册语文期末考试卷
- 《土地开发整理项目预算编制暂行办法》
评论
0/150
提交评论