




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角α的终边上有一点P(a,|a|),a∈R且a≠0,则sinα值为()A. B. C.1 D.或2.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.3.在数列an中,a1=1,an=2A.211 B.24.已知不等式的解集是,则()A. B.1 C. D.35.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.6.已知向量,,,则()A. B. C. D.7.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.8.已知向量,且,则().A. B.C. D.9.从一批产品中取出三件产品,设事件为“三件产品全不是次品”,事件为“三件产品全是次品”,事件为“三件产品不全是次品”,则下列结论正确的是()A.事件与互斥 B.事件与互斥C.任何两个事件均互斥 D.任何两个事件均不互斥10.直线与圆相交于点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,若,则等于__________.12.已知数列是等差数列,若,,则公差________.13.数列中,已知,50为第________项.14.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.15.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=216.已知数列为等比数列,,,则数列的公比为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?参考公式:回归直线的方程,其中,.18.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?19.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.20.已知向量,满足,,.(1)求向量,所成的角的大小;(2)若,求实数的值.21.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据三角函数的定义,求出OP,即可求出的值.【详解】因为,所以,故选B.【点睛】本题主要考查三角函数的定义应用.2、B【解析】
由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.3、D【解析】
将a1=1代入递推公式可得a2,同理可得出a【详解】∵a1=1,an=22an-1-1(【点睛】本题用将a14、A【解析】
的两个解为-1和2.【详解】【点睛】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。5、C【解析】
利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【点睛】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.6、D【解析】
利用平面向量垂直的坐标等价条件列等式求出实数的值.【详解】,,,,解得,故选D.【点睛】本题考查向量垂直的坐标表示,解题时将向量垂直转化为两向量的数量积为零来处理,考查计算能力,属于基础题.7、B【解析】
根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.8、D【解析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.9、B【解析】
根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】为三件产品全不是次品,指的是三件产品都是正品,为三件产品全是次品,为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:与是互斥事件;与是包含关系,不是互斥事件;与是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.10、D【解析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.12、1【解析】
利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=1.故答案为:1.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.13、4【解析】
方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。14、5【解析】
试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质15、32或【解析】
由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。16、【解析】
设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)该协会所得线性回归方程是理想的【解析】试题分析:(1)根据所给的数据求出x,y的平均数,根据求线性回归系数的方法,求出系数,把和,代入公式,求出的值,写出线性回归方程;(2)根据所求的线性回归方程,预报当自变量为10和6时的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到线性回归方程理想.试题解析:解:(Ⅰ)由数据求得,,,由公式求得,所以,所以关于的线性回归方程为.(Ⅱ)当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.点睛:求线性回归方程的步骤:(1)先把数据制成表,从表中计算出的值;(2)计算回归系数;(3)写出线性回归方程.进行线性回归分析时,要先画出散点图确定两变量具有线性相关关系,然后利用公式求回归系数,得到回归直线方程,最后再进行有关的线性分析.18、方式一最大值【解析】
试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.19、(1),,(2)证明见解析,(3)证明见解析,【解析】
(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【点睛】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.20、(1)(2)【解析】
(1)化简即得向量,所成的角的大小;(2)由,可得,化简即得解.【详解】解:(1)由,可得.即,因为,所以,又因为,,代入上式,可得,即.(2)由,可得.即,则,得.【点睛】本题主要考查数量积的运算和向量的模的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1);平均数的估计值(2)【解析】
(1)根据各小矩形面积和为1可求得的值;由频率分布直方图,结合平均数的求法即可求解.(2)根据频率分布直方图先求得成绩在的同学人数,结合分层抽样可得男生4人,女生2人,设男生分别为;女生分别为,利用列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路建设路段安全设施安装方案
- 秋浦歌考试题及答案
- 2025河南焦作市绿鑫城发有限公司招聘1人考试参考试题及答案解析
- 2025年8月四川内江市东兴区城镇公益性岗位招聘24人备考练习题库及答案解析
- 2025宁夏固原泾源县审计局聘请专业人员辅助审计工作4人备考练习题库及答案解析
- 2025四川乐山市农业技术(经济)助理岗招聘100人(第二批)考试参考试题及答案解析
- 2025台州临海市事业单位面向普通高校毕业生退役士兵招聘5人-统考考试参考试题及答案解析
- 2025年品牌企划试题及答案
- 2025河北建材职业技术学院第二次招聘工作人员9人考试参考试题及答案解析
- 2025呼伦贝尔市莫力达瓦达斡尔族自治旗尼尔基第二高级中学选调14名教师考试参考试题及答案解析
- 《现代汉语语法基础知识》公开课课件
- 关于运用监督执纪“第一种形态”的实施办法重点内容学习PPT课件(带内容)
- 苏教版《通用技术》必修一知识点复习课件
- 基本医疗保险职工参保信息变更登记表
- 中国石化加油站视觉形象(vi)标准手册
- 《室内空间设计》第二章课件
- 危大工程巡视检查记录
- Python基础课件(共282张PPT)
- DB44∕T 1836-2016 不锈钢美容工具
- 高一新生入学家长会发言稿
- (完整word版)门禁系统施工工艺
评论
0/150
提交评论