2023届浙江省桐乡市第一中学数学高一第二学期期末质量跟踪监视模拟试题含解析_第1页
2023届浙江省桐乡市第一中学数学高一第二学期期末质量跟踪监视模拟试题含解析_第2页
2023届浙江省桐乡市第一中学数学高一第二学期期末质量跟踪监视模拟试题含解析_第3页
2023届浙江省桐乡市第一中学数学高一第二学期期末质量跟踪监视模拟试题含解析_第4页
2023届浙江省桐乡市第一中学数学高一第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.2.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.3.在中,角对应的边分别是,已知,的面积为,则外接圆的直径为()A. B. C. D.4.在前项和为的等差数列中,若,则=()A. B. C. D.5.如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论中错误的是()A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A﹣BEF的体积为定值D.四面体ACDF的体积为定值6.若向量,则A. B. C. D.7.设非零向量,满足,则()A. B. C.// D.8.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知变量x,y满足约束条件x+y-2≥0,y≤2,x-y≤0,则A.2 B.3 C.4 D.610.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)12.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.13.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.14.若,且,则的最小值是______.15.将无限循环小数化为分数,则所得最简分数为______;16.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)当时,解不等式;(2)若,解关于x的不等式.18.已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和为,求.19.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.20.已知,,,,求的值.21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.2、D【解析】

设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.3、D【解析】

根据三角形面积公式求得;利用余弦定理求得;根据正弦定理求得结果.【详解】由题意得:,解得:由余弦定理得:由正弦定理得外接圆的直径为:本题正确选项:【点睛】本题考查正弦定理、余弦定理、三角形面积公式的综合应用问题,考查学生对于基础公式和定理的掌握情况.4、C【解析】

利用公式的到答案.【详解】项和为的等差数列中,故答案选C【点睛】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.5、B【解析】

根据面面平行的性质定理,判断A选项是否正确,根据锥体体积计算公式,判断BCD选项是否正确.【详解】对于A选项,易得平面与平面平行,所以平面成立,A选项结论正确.对于B选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以四面体体积为定值,故B选项结论错误.对于C选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以三棱锥体积为定值,故C选项结论正确.对于D选项,由于三角形面积为定值,到平面的距离为定值,所以四面体的体积为定值.综上所述,错误的结论为B选项.故选:B【点睛】本小题主要考查利用面面平行证明线面平行,考查三棱锥(四面体)体积的计算,考查空间想象能力和逻辑推理能力,属于基础题.6、B【解析】

根据向量的坐标运算法则,可直接得出结果.【详解】因为,所以.故选B【点睛】本题主要考查向量的坐标运算,熟记运算法则即可,属于基础题型.7、A【解析】

根据与的几何意义可以判断.【详解】由的几何意义知,以向量,为邻边的平行四边形为矩形,所以.故选:A.【点睛】本题考查向量的加减法的几何意义,同时,本题也可以两边平方,根据数量积的运算推出结论.8、D【解析】

根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.9、D【解析】

试题分析:把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时考点:线性规划的应用.【详解】请在此输入详解!10、D【解析】

化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】

①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【点睛】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.12、【解析】

作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.13、【解析】

求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.14、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.15、【解析】

将设为,考虑即为,两式相减构造方程即可求解出的值,即可得到对应的最简分数.【详解】设,则,由可知,解得.故答案为:.【点睛】本题考查将无限循环小数化为最简分数,主要采用方程的思想去计算,难度较易.16、【解析】

根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)答案不唯一,具体见解析【解析】

(1)将代入,解对应的二次不等式可得答案;

(2)对值进行分类讨论,可得不同情况下不等式的解集.【详解】解:(1)当时,有不等式,,∴不等式的解集为或(2)∵不等式又当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【点睛】本题考查的知识点是二次函数的性质,解二次不等式,难度中档.18、(1)数列的通项公式为(2)【解析】试题分析:(1)建立方程组;(2)由(1)得:进而由裂项相消法求得.试题解析:(1)设等差数列的公差为,由题意知解得.所以数列的通项公式为(2)∴19、(1);(2)【解析】

(1)在中,由正弦定理及题设条件,化简得,即可求解.(2)由题意,根据题设条件,列出方程,求的,得到,即可求解周长.【详解】(1)在中,由正弦定理及已知得,化简得,,所以.(2)因为,所以,又的面积为,则,则,所以的周长为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.20、【解析】

根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题考查两角和与差的三角函数公式和同角三角函数关系以及二倍角公式,考察角变换的应用,属于中档题.21、(1)(2)的最大值为,此时【解析】

(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论