2023届新疆维吾尔自治区吐鲁番市高昌区第二中学高一数学第二学期期末达标检测试题含解析_第1页
2023届新疆维吾尔自治区吐鲁番市高昌区第二中学高一数学第二学期期末达标检测试题含解析_第2页
2023届新疆维吾尔自治区吐鲁番市高昌区第二中学高一数学第二学期期末达标检测试题含解析_第3页
2023届新疆维吾尔自治区吐鲁番市高昌区第二中学高一数学第二学期期末达标检测试题含解析_第4页
2023届新疆维吾尔自治区吐鲁番市高昌区第二中学高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列的前项和为,若,则()A.27 B.36 C.45 D.542.已知中,,,,那么角等于()A. B. C.或 D.3.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.4.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.5.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A. B. C. D.6.过点P(0,2)作直线x+my﹣4=0的垂线,垂足为Q,则Q到直线x+2y﹣14=0的距离最小值为()A.0 B.2 C. D.27.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.8.变量满足,目标函数,则的最小值是()A. B.0 C.1 D.-19.已知是第三象限的角,若,则A. B. C. D.10.在中,设角,,的对边分别是,,,且,则一定是()A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.12.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067613.在中,角,,所对的边分别为,,,已知,,,则______.14.在等差数列中,已知,,则________.15.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.16.如图,边长为2的菱形的对角线相交于点,点在线段上运动,若,则的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.18.在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.20.在数列中,,,且;(1)设,证明是等比数列;(2)求数列的通项公式;(3)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项;21.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用等差数列的性质进行化简,由此求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题.2、B【解析】

先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.3、D【解析】

先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【点睛】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.4、B【解析】

函数,由,可得,,因此即可得出.【详解】函数由,可得解得,∵在区间内没有零点,

.故选B.【点睛】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.5、B【解析】由题意不妨令棱长为,如图在底面内的射影为的中心,故由勾股定理得过作平面,则为与底面所成角,且如图作于中点与底面所成角的正弦值故答案选点睛:本题考查直线与平面所成的角,要先过点作垂线构造出线面角,然后计算出各边长度,在直角三角形中解三角形.6、C【解析】

由直线过定点,得到的中点,由垂直直线,得到点在以点为圆心,以为半径的圆,求得圆的方程,由此求出到直线的距离最小值,得到答案.【详解】由题意,过点作直线的垂线,垂足为,直线过定点,由中点公式可得,的中点,由垂直直线,所以点点在以点为圆心,以为半径的圆,其圆的方程为,则圆心到直线的距离为所以点到直线的距离最小值;,故选:C.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系的应用,同时涉及到点到直线的距离公式的应用,着重考查了推理与计算能力,以及分析问题和解答问题的能力,试题综合性强,属于中档试题.7、B【解析】

由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.8、D【解析】

先画出满足条件的平面区域,将变形为:,平移直线得直线过点时,取得最小值,求出即可.【详解】解:画出满足条件的平面区域,如图示:

由得:,

平移直线,显然直线过点时,最小,

由,解得:

∴最小值,

故选:D.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.9、D【解析】

根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【点睛】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.10、C【解析】

利用二倍角公式化简已知表达式,利用余弦定理化角为边的关系,即可推出三角形的形状.【详解】解:因为,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故选:.【点睛】本题考查三角形的形状的判断,余弦定理的应用,考查计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.详解:因为母线,所成角的余弦值为,所以母线,所成角的正弦值为,因为的面积为,设母线长为所以,因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为12、05【解析】

根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.13、30°【解析】

直接利用正弦定理得到或,再利用大角对大边排除一个答案.【详解】即或,故,故故答案为【点睛】本题考查了正弦定理,没有利用大角对大边排除一个答案是容易发生的错误.14、-16【解析】

设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为【点睛】本题考查了等差数列通项公式的应用,属于基础题.15、【解析】

根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.16、【解析】

以为原点建立平面直角坐标系,利用计算出两点的坐标,设出点坐标,由此计算出的表达式,,进而求得最值.【详解】以为原点建立平面直角坐标系如下图所示,设,则①,由得②,由①②解得,故.设,则,当时取得最小值为.故填:.【点睛】本小题主要考查平面向量的坐标运算,考查向量数量积的坐标表示以及数量积求最值,考查二次函数的性质,考查数形结合的数学思想方法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为.(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18、(Ⅰ)(Ⅱ)【解析】

(1)类比等差数列求和的倒序相加法,将等比数列前n项积倒序相乘,可求,代入即可求解.(2)由(1)知,利用两角差的正切公式,化简,,得,再根据裂项相消法,即可求解.【详解】(Ⅰ)由题意,构成递增的等比数列,其中,则①②①②,并利用等比数列性质,得(Ⅱ)由(Ⅰ)知,又所以数列的前项和为【点睛】(Ⅰ)类比等差数列,利用等比数列的相关性质,推导等比数列前项积公式,创新应用型题;(Ⅱ)由两角差的正切公式,推导连续两个自然数的正切之差,构造新型的裂项相消的式子,创新应用型题;本题属于难题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).20、(1)略(2)(3)证明略【解析】本题源自等差数列通项公式的推导.(1)证明:由题设(),得,即,.又,,所以是首项为1,公比为的等比数列.(2)由(1),,……,().将以上各式相加,得().所以当时,上式对显然成立.(3)由(2),当时,显然不是与的等差中项,故.由可得,由得,①整理得,解得或(舍去).于是.另一方面,,.由①可得,.所以对任意的,是与的等差中项.21、(1);(2);(3),.【解析】

(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论