




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.8角度计算中的经典模型【八大题型】【浙教版】TOC\o"1-2"\h\u【题型1双垂直模型】 1【题型2A字模型】 4【题型38字模型】 7【题型4飞镖模型】 10【题型5风筝模型】 14【题型6两内角角平分线模型】 18【题型7两外角角平分线模型】 21【题型8内外角角平分线模型】 24【知识点1双垂直模型】【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∵∠B=∠D=∠ACE=90°;∴∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∴∠BAC=∠DCE同理,∠ACB+∠DCE
=90°,且∠CED+∠DCE
=90°;∴∠ACB=∠CED,得证.【题型1双垂直模型】【例1】(2022春•建邺区期末)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)求证:CD⊥AB证明:在Rt△ABC中,∵∠ACB=90°(已知)∴∠A+∠B=90°()又∵∠ACD=∠B(已知)∴∠A+∠ACD=90°(等量代换)∴∠ADC=90°()∴CD⊥AB.(2)如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE;(3)如图③,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,S△ABC=36.①求S△CEF﹣S△ADF的值;②四边形BDFE的面积是.【变式1-1】(2022春•润州区期末)已知△ABC中,∠ABC=90°,BD是AC边上的高,AE平分∠BAC,分别交BC、BD于点E、F.求证:∠BFE=∠BEF.【变式1-2】(2022•绥棱县校级期中)(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?【变式1-3】(2022春•香洲区期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;②求∠F的度数.【提示:三角形内角和等于180度】【知识点2A字模型】【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∴∠AED+∠ADE=∠B+C,得证.【题型2A字模型】【例2】(2022•江阴市校级月考)如图是某建筑工地上的人字架.这个人字架夹角∠1=120°,那么∠3﹣∠2的度数为.【变式2-1】(2022春•道里区期末)如图,△ABC中∠A=115°,若图中沿虚线剪去∠A,则∠1+∠2等于()A.180° B.230° C.290° D.295°【变式2-2】(2022武功县期末)如图,点D、E分别在△ABC的边AB、AC上,连接DC、DE,在CD上取一点F,连接EF,若∠1+∠2=180°,∠3=∠B,求证:DE∥BC.【变式2-3】(2022春•新野县期末)旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?初步应用:(2)如图2,在△ABC纸片中剪去△CDE,得到四边形ABDE,∠1=130°,则∠2﹣∠C=50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)【知识点38字模型】【条件】AD、BC相交于点O.【结论】∠A+∠B=∠C+∠D.(上面两角之和等于下面两角之和)【证明】在△ABO中,由内角和定理:∠A+∠B+∠BOA=180°,在△CDO中,∠C+∠D+∠COD=180°,∴∠A+∠B+∠BOA=180°=∠C+∠D+∠COD,由对顶角相等:∠BOA=∠COD∴∠A+∠B=∠C+∠D,得证.【题型38字模型】【例3】(2022春•叙州区期末)如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P=40°,则∠C的度数为()A.30° B.35° C.40° D.45°【变式3-1】(2022春•靖江市校级月考)已知,如图,线段AD、CB相交于点O,连结AB、CD,∠DAB和∠BCD的平分线AP和CP相交于点P.试问∠P与∠D、∠B之间存在着怎样的数量关系,请说明理由.【变式3-2】(2022春•新野县期末)在学习并掌握了平行线的性质和判定内容后,数学老师安排了自主探究内容一利用平行线有关知识探究并证明:三角形的内角和等于180°.小颖通过探究发现:可以将三角形的三个内角之和转化为一个平角来解决,也就是可以过三角形的一个顶点作其对边的平行线来证明.请将下面(1)中的证明补充完整(1)已知:如图1,三角形ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC.(2)如图2,线段AB、CD相交于点O,连接AD、CB,我们把形如图2这样的图形称之为“8字形”.请利用小颖探究的结论直接写出∠A、∠B、∠C、∠D之间的数量关系:;(3)在图2的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,得到图3,请判断∠P与∠D、∠B之间存在的数量关系,并说明理由.【变式3-3】(2022春•石家庄期中)如图1至图2,在△ABC中,∠BAC=α°,点D在边AC所在直线上,作DE垂直于直线BC,垂足为点E;BM为△ABC的角平分线,∠ADE的平分线交直线BC于点G.特例感悟:(1)如图1,延长AB交DG于点F,若BM∥DG,∠F=30°.解决问题:①∠ABC=°;②求证:AC⊥AB;深入探究;(2)如图2,当α<90,DG与BM反向延长线交于点H,用含α的代数式表示∠BHD=;拓展延伸:(3)当点D在直线AC上移动时,若射线DG与射线BM相交,设交点为N,直接写出∠BND与α的关系式.【知识点4飞镖模型】【条件】四边形ABDC如上左图所示.【结论】∠D=∠A+∠B+∠C.(凹四边形凹外角等于三个内角和)【证明】如上右图,连接AD并延长到E,则:∠BDC=∠BDE+∠CDE=(∠B+∠1)+(∠2+∠C)=∠B+∠BAC+∠C.本质为两个三角形外角和定理证明.【题型4飞镖模型】【例4】(2022春•三明期末)探究与思考:(1)如图①,∠BPC是△ABP的一个外角,则有结论:∠BPC=∠A+∠B成立.若点P沿着线段PB向点B运动(不与点B重合),连接PC形成图形②,我们称之为“飞镖”图形,那么请你猜想“飞镖”图形中∠BPC与∠A、∠B、∠C之间存在的数量关系?并证明你的猜想;(2)利用(1)的结论,请你求出五角星(如图③)中∠A+∠B+∠C+∠D+∠E的值,说明你的理由;(3)若五角星中的点B向右运动,形成如图④⑤形状,(2)中的结论还成立吗?请从图④⑤中任选一个图形说明理由.【变式4-1】(2022春•井研县期末)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.【变式4-2】(2022春•深圳校级期中)平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.【变式4-3】(2022•吉州区期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【知识点5风筝模型】【条件】四边形ABPC,分别延长AB、AC于点D、E,如上左图所示.【结论】∠PBD+∠PCE=∠A+∠P.【证明】如上右图,连接AP,则:∠PBD=∠PAB+∠APB,∠PCE=∠PAC+∠APC,∴∠PBD+∠PCE=∠PAB+∠APB+∠PAC+∠APC=∠BAC+∠BPC,得证.【题型5风筝模型】【例5】(2022春•南通期末)如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),图中∠1+∠2+∠3+∠4+∠5+∠6=°.【变式5-1】(2022春•铜山区期中)(1)如图1,把△ABC沿DE折叠,使点A落在点A′处,请直接写出∠1+2与∠A的关系:.(2)如图2,把△ABC分别沿DE、FG折叠,使点A落在点A′处,使点B落在点B′处,若∠1+∠2+∠3+∠4=220°,则∠C=°(3)如图3,在锐角△ABC中,BM⊥AC于点M,CN⊥AB于点N,BM、CN交于点H,把△ABC沿DE折叠使点A和点H重合,则∠BHC与∠1+∠2的关系是.A.∠BHC=180°-12(∠1+∠B.∠BHC=∠1+∠2C.∠BHC=90°+12(∠1+∠D.∠BHC=90°+∠1﹣∠2(4)如图4,BH平分∠ABC,CH平分∠ACB,把△ABC沿DE折叠,使点A与点H重合,若∠1+∠2=100°,求∠BHC的度数.【变式5-2】(2022春•常州期中)已知△ABC是一张三角形的纸片.(1)如图①,沿DE折叠,使点A落在边AC上点A′的位置,∠DA′E与∠1的之间存在怎样的数量关系?为什么?(2)如图②所示,沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?(3)如图③,沿DE折叠,使点A落在四边形BCED的外部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?【变式5-3】(2022春•姜堰市期中)△ABC,直线DE交AB于D,交AC于E,将△ADE沿DE折叠,使A落在同一平面上的A′处,∠A的两边与BD、CE的夹角分别记为∠1,∠2如图①,当A落在四边形BDEC内部时,探索∠A与∠1+∠2之间的数量关系,并说明理由.如图②,当A′落在BC下方时,请直接写出∠A与∠1+∠2之间的数量关系.如图③,当A′落在AC右侧时,探索∠A与∠1,∠2之间的数量关系,并说明理由.【知识点6两内角角平分线模型】【条件】△ABC中,BI、CI分别是∠ABC和∠ACB的角平分线,且相交于点I.【结论】【证明】∵BI是∠ABC平分线,∴∵CI是∠ACB平分线,∴由A→B→I→C→A的飞镖模型可知:∠I=∠A+∠2+∠3=∠A++=∠A+=.【题型6两内角角平分线模型】【例6】(2022春•靖江市校级月考)如图,△ABC中,∠BAC=50°,∠ABC的角平分线与∠ACB的角平分线交于点O.则∠BOC=.【变式6-1】(2022春•昌平区校级期中)如图,BD,CE,AF分别是△ABC的角平分线,且相交于点O,OH⊥BC于H,试问∠1=∠2?请说明理由.【变式6-2】(2022春•秀英区校级期末)如图,在△ABC中,∠ABC,∠ACB的平分线BD,CE相交于点O.(1)若∠A=60°,求∠BOC的度数;(2)求证:∠BOC=90°+12∠【变式6-3】(2022春•海淀区校级期中)已知AB∥CD,直线EF与AB、CD分别交于点E、F,点G为落在直线AB和直线CD之间的一个动点.(1)如图1,点G恰为∠BEF和∠DFE的角平分线的交点,则∠EGF=;(2)若点G恰为∠BEF和∠DFE的三等分线的交点,有如下结论:①∠EGF一定为钝角;②∠EGF可能为60°;③若∠EGF为直角,则EF⊥CD.其中正确结论的序号为.(3)进一步探索,若EF⊥CD,且点G不在线段EF上,记∠AEG=α,∠CFG=β,EM为∠AEG最接近EG的n等分线,FN是∠CFG最接近CF的n等分线(其中n≥2).直线EM、FN交于点Pn,是否存在某一正整数n,使得∠EPnF=90°?说明理由.【知识点7两外角角平分线模型】【条件】△ABC中,BI、CI分别是△ABC的外角的角平分线,且相交于点O.【结论】.【证明】∵BO是∠EBC平分线,∴,∵CO是∠FCB平分线,∴由△BCO中内角和定理可知:∠O=180°-∠2-∠5=180°--=180°--===【题型7两外角角平分线模型】【例7】(2022•平湖市模拟)如图,在△ABC中,∠B,∠C的外角平分线相交于点O,若∠A=74°,则∠O=度.【变式7-1】(2022春•新北区校级期中)(1)如图①,在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图②,△A′B′C′的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1)、(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?这个结论你是怎样得到的?【变式7-2】(2022春•江夏区期末)如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至E,连接CE交AD于F,∠EAD和∠ECD的角平分线相交于点P.若∠E=60°,∠APC=70°,则∠D的度数是()A.80° B.75° C.70° D.60°【变式7-3】(2022春•丰县月考)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=105°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请直接写出α,β所满足的数量关系式;(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.【知识点8内外角角平分线模型】【条件】△ABC中,BP、CP分别是△ABC的内角和外角的角平分线,且相交于点P.【结论】【证明】∵BP是∠ABC平分线,∴∵CP是∠ACE平分线,∴由△ABC外角定理可知:∠ACE=∠ABC+∠A即:2∠1=2∠3+∠A……①对①式两边同时除以2,得:∠1=∠3+……②又在△BPC中由外角定理可知:∠1=∠3+∠P……③比较②③式子可知:.==.【题型8内外角角平分线模型】【例8】(2022春•榕城区期末)如图,∠AOB=60°,点M、N分别在OA、OB上运动(不与点O重合),ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M、N的运动过程中,∠F的度数()A.变大 B.变小 C.等于45° D.等于30°【变式8-1】(2022春•海陵区校级期末)△ABC中,三个内角的平分线交于点O,过点O作∠ODC=∠AOC,交边BC于点D.(1)如图1,求∠BOD的度数;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BE∥OD;②若∠F=50°,求∠BAC的度数;③若∠F=∠ABC=50°,将△BOD绕点O顺时针旋转一定角度α(00<α<3600
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业名称社会责任报告2025年度发展报告医疗器械行业
- 文化产业政策2025年对文化产业发展政策效应分析可行性研究报告
- 智能物流行业市场竞争应对策略研究报告2025
- 2025届春季中国融通集团校园招聘考前自测高频考点模拟试题及答案详解1套
- 2025年宁波市中医院公开招聘派遣制护士20人考前自测高频考点模拟试题含答案详解
- 2025广西仙城投资发展集团有限公司第一次招聘人员考前自测高频考点模拟试题附答案详解
- 2025广东广州市榄核咨询服务有限公司招聘1人笔试历年参考题库附带答案详解
- 贵州国企招聘2025六枝特区区属国有企业选聘市场化职业经理人笔试历年参考题库附带答案详解
- 浙江国企招聘2025温州平阳县国润控股有限公司公开招聘项目制专技人员9人笔试历年参考题库附带答案详解
- 2025黑龙江省水利水电集团有限公司总部机关及财务共享分中心员工岗位竞聘10人笔试历年参考题库附带答案详解
- 2025年镇江市中考英语试题卷(含答案)
- 航海船舶因应气象预报方案
- 铝合金介绍教学课件
- 电气班组安全教育培训课件
- 《2025同上一堂思政课》观后感10篇
- SY4201.2-2019石油天然气建设工程施工质量验收规范设备安装塔类检验批表格
- 电机的工作原理课件
- 设计质量意识培训课件
- 2025年四川省高考化学试卷真题(含答案解析)
- 2025年新玩家股东招募协议书
- 食品安全知识培训会议记录范文
评论
0/150
提交评论