版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连市庄河第四高级中学2021年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则f(x)<0的解集是()A.{x|﹣3<x<0或x>3} B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3} D.{x|﹣3<x<0或0<x<3}参考答案:B【考点】奇偶性与单调性的综合.【分析】利用函数是奇函数且在(0,+∞)内是增函数,得到函(﹣∞,0)上单调递增,利用f(﹣3)=0,得f(3)=0,然后解不等式即可.【解答】解:∵f(x)是奇函数,f(﹣3)=0,∴f(﹣3)=﹣f(3)=0,解f(3)=0.∵函数在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0.当x>3时,f(x)>0,∵函数f(x)是奇函数,∴当﹣3<x<0时,f(x)>0.当x<﹣3时,f(x)<0,则不等式f(x)<0的解是0<x<3或x<﹣3.故选:B.2.设函数f(x)=,则f(f(3))=(
)A. B.3 C. D.参考答案:D【考点】函数的值.【专题】计算题.【分析】由条件求出f(3)=,结合函数解析式求出f(f(3))=f()=+1,计算求得结果.【解答】解:函数f(x)=,则f(3)=,∴f(f(3))=f()=+1=,故选D.【点评】本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,求出f(3)=,是解题的关键,属于基础题.3.
设抛物线的顶点在原点,准线方程为,则抛物线的方程是(
)
(A)
(B)
(C)
(D)参考答案:A4.函数f(x)=|x-1|的图象是()参考答案:B略5.圆和圆的位置关系为【
】.A.相离
B.相交
C.外切
D.内含参考答案:B6.设全集,,,则(
)A.
B.
C.
D.参考答案:B7.的值的(
)A.
B.0
C.
D.参考答案:B..故选B.
8.已知f(x)是定义在R上的偶函数,f(x)在x∈[0,+∞)上为增函数,且f(﹣3)=0,则不等式f(2x﹣1)<0的解集为(
)A.(﹣1,2) B.(﹣∞,﹣1)∪(2,+∞) C.(﹣∞,2) D.(﹣1,+∞)参考答案:A【考点】函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(3)=0,f(2x﹣1)<0,可得f(|2x﹣1|)<f(3),再利用单调性即可得出.【解答】解:∵定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(﹣3)=0,∴f(3)=0,f(x)=f(|x|),∴f(|2x﹣1|)<f(3),∴|2x﹣1|<3,解得﹣1<x<2.∴不等式f(x)<0的解集是(﹣1,2).故选:A.【点评】本题考查了函数的奇偶性、单调性及运用,考查运算能力,属于中档题.9.若直线的倾斜角满足,且,则它的斜率满足()A.
B.
C.
D.参考答案:D10.设函数在上是减函数,则A.
B.
C.
D.
参考答案:B
二、填空题:本大题共7小题,每小题4分,共28分11.若不等式ax2+bx+2>0的解集为{x|-},则a+b=________.参考答案:-1412.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则
.参考答案:-113.在△ABC中,已知a≠b,.则内角C=_______,式子的取值范围是________。参考答案:
【分析】利用正弦定理化简已知条件,得到,由此求得.利用化简,由此求得表达式去取值范围.【详解】由,得,化简得,由正弦定理得,即,由于,故.所以,且,故,由于,且,故,所以.【点睛】本小题主要考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,考查三角函数值域的求法,综合性比较强,属于中档题.14.若数列{an}的前n项和为Sn,且,则_______参考答案:-32【分析】由递推关系求得即可求解【详解】当,两式作差得,故,为等比数列,又,故答案为【点睛】本题考查递推关系求通项,考查等比数列通项公式,是基础题15.已知,a与b的夹角为60,则a+b在a方向上的投影为_________.参考答案:16.幂函数的图象经过点,则值为
.
参考答案:-2717.若函数为奇函数,则的值为_____.参考答案:【分析】由函数是奇函数,则,即,即可求解.【详解】由题意,函数是奇函数,则,即,所以.故答案为:.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=log9(9x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)若函数y=f(x)的图象与直线没有交点,求b的取值范围;(3)设,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.参考答案:【考点】函数奇偶性的性质;函数与方程的综合运用.【专题】计算题.【分析】(1)因为f(x)为偶函数所以f(﹣x)=f(x)代入求得k的值即可;(2)函数与直线没有交点即无解,即方程log9(9x+1)﹣x=b无解.令g(x)=log9(9x+1)﹣x,则函数y=g(x)的图象与直线y=b无交点.推出g(x)为减函数得到g(x)>0,所以让b≤0就无解.(3)函数f(x)与h(x)的图象有且只有一个公共点,即联立两个函数解析式得到方程,方程只有一个解即可.【解答】解:(1)因为y=f(x)为偶函数,所以?x∈R,f(﹣x)=f(x),即log9(9﹣x+1)﹣kx=log9(9x+1)+kx对于?x∈R恒成立.即恒成立即(2k+1)x=0恒成立,而x不恒为零,所以.(2)由题意知方程即方程log9(9x+1)﹣x=b无解.令g(x)=log9(9x+1)﹣x,则函数y=g(x)的图象与直线y=b无交点.因为任取x1、x2∈R,且x1<x2,则,从而.于是,即g(x1)>g(x2),所以g(x)在(﹣∞,+∞)是单调减函数.因为,所以.所以b的取值范围是(﹣∞,0).(3)由题意知方程有且只有一个实数根.令3x=t>0,则关于t的方程(记为(*))有且只有一个正根.若a=1,则,不合,舍去;若a≠1,则方程(*)的两根异号或有两相等正根.由或﹣3;但,不合,舍去;而;方程(*)的两根异号?(a﹣1)?(﹣1)<0,即﹣a+1<0,解得:a>1.综上所述,实数a的取值范围{﹣3}∪(1,+∞).【点评】考查学生运用函数奇偶性的能力,以及函数与方程的综合运用能力.19.设函数.(1)求函数最大值;(2)若函数在上有零点,求实数的取值范围;(3)对于给定的正数,有一个最大的正数,使得在整个区间上,不等式都成立,求表达式,并求函数最大值.参考答案:解答:(1),故函数最大值---------2分(2)由题意,因为,图像开口朝下,则必有,解得---------4分(3)由,当时,即是方程的较小根,解得;当时,即时,是方程的较大根,解得;综上:---------7分
(3)当时,当时,对比可知:当时,取到最大值---------10分
略20.已知是二次函数且,求。(10分)参考答案:解:设二次函数21.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)若f(|2k﹣1|)+k?﹣3k=0有三个不同的实数解,求实数k的取值范围.参考答案:【考点】函数恒成立问题;函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】(1)由函数g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在区间[2,3]上是增函数,故,由此解得a、b的值.(2)不等式可化为2x+﹣2≥k?2x,故有k≤t2﹣2t+1,t∈[,2],求出h(t)=t2﹣2t+1的最小值,从而求得k的取值范围.(3)方程f(|2k﹣1|)+k?﹣3k=0?|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,(|2x﹣1|≠0),令|2x﹣1|=t,则t2﹣(2+3k)t+(1+2k)=0(t≠0),构造函数h(t)=t2﹣(2+3k)t+(1+2k),通过数形结合与等价转化的思想即可求得k的范围.【解答】解:(1)函数g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,因为a>0,所以g(x)在区间[2,3]上是增函数,故,即,解得.(2)由已知可得f(x)=x+﹣2,所以,不等式f(2x)﹣k?2x≥0可化为2x+﹣2≥k?2x,可化为1+()2﹣2?≥k,令t=,则k≤t2﹣2t+1.因x∈[﹣1,1],故t∈[,2].故k≤t2﹣2t+1在t∈[,2]上恒成立.记h(t)=t2﹣2t+1,因为t∈[,2],故h(t)min=h(1)=0,所以k的取值范围是(﹣∞,0].(3)方程f(|2k﹣1|)+k?﹣3k=0可化为:|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程f(|2k﹣1|)+k?﹣3k=0有三个不同的实数解,∴由t=|2x﹣1|的图象知,t2﹣(2+3k)t+(1+2k)=0(t≠0),有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1.记h(t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- 2025年四川大学华西乐城医院招聘18人备考题库有答案详解
- 2025年哈尔滨市天元学校招聘临聘教师备考题库及答案详解参考
- 2025年蒙晟建设有限公司公开招聘紧缺专业人员的备考题库及完整答案详解1套
- 2025年四川省筠连县公证处公开招聘公证员2人备考题库及一套参考答案详解
- 功能性腹胀中医诊疗专家共识总结2026
- 渐变风年会庆典晚会表彰
- 《植物工厂多层立体栽培模式光环境调控与植物生长周期调控研究》教学研究课题报告
- 2025年张家港市第三人民医院自主招聘编外合同制卫技人员备考题库附答案详解
- 2025年浙江省中医院、浙江中医药大学附属第一医院(第一临床医学院)公开招聘人员备考题库及一套完整答案详解
- 2025年中考语文一轮复习:名著导读《简爱》专题练习题(含答案)
- 2025年国家开放大学管理英语3作业答案
- 乳腺癌全程、全方位管理乳腺癌患者依从性及心理健康管理幻灯
- 四川省高职单招汽车类《汽车机械基础》复习备考试题库(含答案)
- 2024CSCO肿瘤患者静脉血栓防治指南解读
- MOOC 中国文化概论-华南师范大学 中国大学慕课答案
- 博物馆保安服务投标方案(技术方案)
- 浙人美版美术五年级上册期末复习资料整理
- 年产20万吨氯乙烯工艺设计
- GB/T 42737-2023电化学储能电站调试规程
- 人民网舆情监测室发布2023年互联网舆情分析报告
评论
0/150
提交评论