版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省景德镇市桂华中学2021-2022学年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△中,若,则△是(
)A直角三角形B等边三角形
C钝角三角形
D等腰直角三角形.参考答案:B略2.当你一觉醒来,发现表都停了,手边只有收音机,你想听电台报时,则等待时间不多于分钟的概率是(
)
参考答案:A略3.如图是一个空间几何体的主(正)视图、侧(左)视图、
俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为(
)A.1
B.
C.
D.参考答案:C4.已知空间中的直线m、n和平面α,且m⊥α.则“m⊥n”是“n?α”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】m⊥α,n?α?m⊥n,反之不成立,可能n∥α.即可判断出结论.【解答】解:∵m⊥α,n?α?m⊥n,反之不成立,可能n∥α.∴“m⊥n”是“n?α”成立的必要不充分条件.故选:B.5.圆的圆心坐标是(
)A.
B.
C.
D.参考答案:A略6.正数x,y满足2x+y=1,则的最小值为(
)A、3
B、2
C、
D、参考答案:C略7.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于(
)A.2 B.2 C.4 D.4参考答案:C【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.8.已知点为空间不共面的四点,且向量,向量,则与,不能构成空间基底的向量是(
)A.
B.
C.
D.或参考答案:C∵,即与,共面,∴与,不能构成空间基底;故选:C.
9.为了旅游业的发展,某旅行社组织了14人参加“旅游常识”知识竞赛,每人回答3个问题,答对题目个数及对应人数统计结果见下表:答对题目个数0123人数3254根据上表信息,若从14人中任选3人,则3人答对题目个数之和为6的概率是()A. B. C. D.参考答案:D【考点】列举法计算基本事件数及事件发生的概率.【分析】从14人中任选3人,求出基本事件总数n=,记“3人答对题目个数之和为6”为事件A,求出事件A包含的基本事件个数,由此利用列举法能求出从14人中任选3人,则3人答对题目个数之和为6的概率.【解答】解:∵从14人中任选3人,基本事件总数n=,记“3人答对题目个数之和为6”为事件A,则事件A包含的基本事件个数:m=,∴从14人中任选3人,则3人答对题目个数之和为6的概率是:P(A)==.故选:D.【点评】本小题主要概率等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等,是基础题.10.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为()A.相交 B.平行 C.异面 D.重合参考答案:C【考点】空间中直线与直线之间的位置关系.【分析】把正方体的表面展开图还原成正方体,由此能求出直线MN与直线PB的位置关系.【解答】解:把正方体的表面展开图还原成正方体,如图,∵MN∥BD,PB∩BD=B,∴直线MN与直线PB异面.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.在中,角所对的边分别为且.(1)求角;(2)已知,求的值.参考答案:解:(1)在中,
..........................................4分................................................6分(2)由余弦定理..................................8分又则......................10分解得:....................................................12分
略12.某产品的广告费用x与销售额y的统计数据如表广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为.参考答案:65.5万元【考点】回归分析的初步应用.【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故答案为:65.5万元.13.已知函数在处取得极小值4,则________.参考答案:314.已知实数,b满足:(其中i是虚数单位),若用表示数列的前n项的和,则的最大值是
▲
。参考答案:16
略15.前100个正整数中,除以7余数为2的所有数的和是
.参考答案:765【考点】数列的求和.【分析】前100个正整数中,除以7余数为2的所有数为:2,9,…,100,此数列是公差为7的等差数列,利用求和公式即可得出.【解答】解:前100个正整数中,除以7余数为2的所有数为:2,9,…,100,此数列是公差为7的等差数列.令100=2+7(n﹣1),解得n=15.∴前100个正整数中,除以7余数为2的所有数的和==765.故答案为:765.16.已知平面α∥β,,有下列说法:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中正确的序号为
参考答案:②17.设函数f(x)的导函数为,若,则=▲
.参考答案:105结合导数的运算法则可得:,则,导函数的解析式为:,据此可得:.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设命题
是减函数,命题:关于的不等式的解集为,如果“或”为真命题,“且”为假命题,求实数的取值范围.参考答案:若命题:是减函数真命题,则,-----------2分
若命题:关于的不等式的解集为为真命题,则,则.---4分
又∵“或”为真命题,“且”为假命题,则,恰好一真一假-------6分
当命题为真命题,命题为假命题时,----------8分
当命题为假命题,命题为真命题时,,---------10分
故满足条件的实数的取值范围是.---------12分19.已知数列{an}的前n项和Sn=n2+2n(n∈N+),数列{bn}的前n项和Tn=2n﹣1(n∈N+).(1)求数列{}的前n项和;(2)求数列{an?bn}的前n项和.参考答案:【考点】数列的求和.【专题】综合题;转化思想;综合法;等差数列与等比数列.【分析】(1)由已知得an=2n+1.从而==,由此利用裂项求和法能求出数列{}的前n项和.(2)由已知得,从而an?bn=(2n+1)?2n﹣1,由此利用错位相减法能求出数列{an?bn}的前n项和.【解答】解:(1)∵数列{an}的前n项和Sn=n2+2n(n∈N+),∴a1=S1=1+2=3,n≥2时,an=Sn﹣Sn﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1,n=1时,2n+1=3=a1,∴an=2n+1.∴==,∴数列{}的前n项和:An=(+…+)==.(2)∵数列{bn}的前n项和Tn=2n﹣1(n∈N+),∴b1=T1=2﹣1=1,n≥2时,bn=Tn﹣Tn﹣1=(2n﹣1)﹣(2n﹣1﹣1)=2n﹣1,n=1时,2n﹣1=1=a1,∴,∴an?bn=(2n+1)?2n﹣1,∴数列{an?bn}的前n项和:Bn=3?1+5?2+7?22+…+(2n+1)?2n﹣1,①2Bn=3?2+5?22+7?23+…+(2n+1)?2n,②①﹣②,得﹣Bn=3+22+23+…+2n﹣(2n+1)?2n=﹣(2n+1)?2n=2n+1﹣1﹣(2n+1)?2n,∴Bn=(2n﹣1)?2n+1.【点评】本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意列项求和法和错位相减法的合理运用.20.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80,=20,=184,=720.(1)求家庭的月储蓄y对月收入x的线性回归方程;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程中,b=,参考答案:(1)(2)试题分析:(1)先求均值,,,再代公式求系数,最后根据回归直线方程过点求(2)即求自变量为7时对应函数值试题解析:(1)由题意知,,,∴,∴,故所求回归方程为.(2)将代入回归方程可以预测该家庭的月储蓄为(千克).
22.已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回地连续摸三次,每次摸出2个球,若2个球颜色不同则为中奖,否则不中奖.(1)当n=3时,设三次摸球中中奖的次数为X,求随机变量X的分布列;(2)记三次摸球中恰有两次中奖的概率为P,求当n取多少时,P的值最大.【答案】(1)见解析;(2)1或2【解析】【分析】(1)当n=3时,每次摸出两个球,中奖的概率p==,设中奖次数为ζ,则ζ的可能取值为0,1,2,3.分别求出P(ζ=0),P(ζ=1),P(ζ=2),P(ζ=3),由此能求出ζ的分布列和Eζ.(2)设每次摸奖中奖的概率为p,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P(ζ=2)=?p2?(1﹣p)=﹣3p3+3p2,0<p<1,由此利用导数性质能求出n为1或2时,P有最大值.【详解】(1)当n=3时,每次摸出两个球,中奖的概率,;
;;;ξ分布列为:ξ0123p
(2)设每次摸奖中奖的概率为p,则三次摸球(每次摸奖后放回)恰有两次中奖的概率为:,0<p<1,P'=﹣9p2+6p=﹣3p(3p﹣2),知在上P为增函数,在上P为减函数,当时P取得最大值.又,故n2﹣3n+2=0,解得:n=1或n=2,故n为1或2时,P有最大值.【点睛】本题考查离散型随机变量的分布列和数学斯望的求法,解题时要认真审题,解题时要认真审题,注意导数的性质的灵活运用.21.已知
(1)求数列{}的通项公式;www.ks5u
(2)数列{}的首项b1=1,前n项和为Tn,且,求数列{}的通项公式bn参考答案:解析:(1)由题意知………2分
是等差数列.………4分
…………………5分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江省旅投集团招聘25人笔试参考题库及答案解析
- 2026一汽解放校园招聘笔试模拟试题及答案解析
- 2026年四川水利职业技术学院单招职业适应性测试模拟测试卷及答案1套
- 2026年鄂州职业大学单招职业倾向性考试题库及答案1套
- 2026年广西建设职业技术学院单招职业技能测试模拟测试卷及答案1套
- 2026年湖南城建职业技术学院单招职业技能测试题库附答案
- 2026年宁波大学科学技术学院单招职业技能测试模拟测试卷及答案1套
- 2026年濮阳科技职业学院单招职业适应性考试模拟测试卷及答案1套
- 2026年河南检察职业学院单招真题及答案1套
- 2025年山东省科创集团有限公司招聘(33人)模拟试卷附答案
- YS/T 3045-2022埋管滴淋堆浸提金技术规范
- 项目进度跟进及完成情况汇报总结报告
- 2024-2025学年冀教版九年级数学上册期末综合试卷(含答案)
- 《智能网联汽车车控操作系统功能安全技术要求》
- 峨眉山城市介绍旅游宣传课件
- 浙江省温州市乐清市2023-2024学年五年级上学期期末语文试题
- 土壤改良合同模板
- 2024年中国成人心肌炎临床诊断与治疗指南解读课件
- 2024年新疆文旅旅游投资集团招聘笔试冲刺题(带答案解析)
- JT-T-915-2014机动车驾驶员安全驾驶技能培训要求
- (高清版)WST 442-2024 临床实验室生物安全指南
评论
0/150
提交评论