江苏省常州市2020届高三上学期期末考试数学(理)试题Word版含_第1页
江苏省常州市2020届高三上学期期末考试数学(理)试题Word版含_第2页
江苏省常州市2020届高三上学期期末考试数学(理)试题Word版含_第3页
江苏省常州市2020届高三上学期期末考试数学(理)试题Word版含_第4页
江苏省常州市2020届高三上学期期末考试数学(理)试题Word版含_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

常州市教育学会学业水平监测高三数学Ⅰ试题参照公式:1Sh,此中S是圆锥的底面积,h是高.圆锥的体积公式:V圆锥=3样本数据x1,x2,,xn的方差s21n2,此中x1nni1(xix)xi.ni1一、选择题:本大题共14个小题,每题5分,共70分.请把答案填写在答题卡相....应地点上.....1.若会合A{2,0,1},B{xx21},则会合AIB▲.2命题“x[0,1],x210”是▲命题(选填“真”或“假”).3.若复数z知足z2i21(此中i为虚数单位),则z▲.z4.若一组样本数据2015,2017,x,2018,2016的均匀数为2017,则该组样本数据的方差为5.如图是一个算法的流程图,则输出的n的值是▲.1D,随机地扔掷一枚质地均匀的正方体骰子(骰子的每6.函数f(x)的定义域记作会合lnx个面上分别标有点数1,2,,6),记骰子向上的点数为t,则事件“tD”的概率为▲.7.已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,获得的圆台体积是7,则该圆台的高为▲.8.各项均为正数的等比数列an中,若a2a3a4a2a3a4,则a3的最小值为▲.9.在平面直角坐标系xOy中,设直线l:xy10与双曲线C:x2y21(a0,b0)a2b2的两条渐近线都订交且交点都在y轴左边,则双曲线C的离心率e的取值范围是▲.xy0,10.已知实数x,y知足2xy20,则xy的取值范围是▲.x2y40,11.已知函数f(x)bxlnx,此中bR,若过原点且斜率为k的直线与曲线yf(x)相切,则kb的值为▲.12.如图,在平面直角坐标系xOy中,函数ysin(x)(0,0)的图像与x轴的交点A,B,C知足OAOC2OB,则▲.13.在ABC中,AB5,AC7,BC3,P为ABC内一点(含界限),若知足uuuruuuruuuruuuruuurBP1BABC(R),则BABP的取值范围为▲.414.已知ABC中,ABAC3,ABC所在平面内存在点P使得PB2PC23PA23,则ABC面积的最大值为▲.二、解答题:本大题共6小题,合计90分.请在答题卡指定地区内作答,解答应.......写出文字说明、证明过程或演算步骤.)15.已知ABC中,a,b,c分别为三个内角A,B,C的对边,3bsinCccosB+c,(1)求角B;(2)若b2ac,求11的值.tanAtanC16.如图,四棱锥PABCD的底面ABCD是平行四边形,PC平面ABCD,PBPD,点Q是棱PC上异于P、C的一点.(1)求证:

BD

AC;(2)过点

Q和的

AD

平面截四棱锥获得截面

ADQF

(点

F

在棱

PB上),求证:

QF//BC

.17.已知小明(如图中

AB

所示)身高

1.8米,路灯

OM

高3.6米,

AB

,OM

均垂直于水平地面,分别与地面交于点

A,O.点光源从

M

发出,小明在地上的影子记作

AB'.(1)小明沿着圆心为O,半径为3米的圆周在地面上走一圈,求AB'扫过的图形面积;(2)若OA3米,小明从A出发,以1米/秒的速度沿线段AA1走到A1,OAA1,且3AA110米.t秒时,小明在地面上的影子长度记为f(t)(单位:米),求f(t)的表达式与最小值.18.如图,在平面直角坐标系x2y21(ab0)的右焦点为F,点A是xOy中,椭圆C:2b2a椭圆的左极点,过原点的直线MN与椭圆交于M,N两点(M在第三象限),与椭圆的右准线交于P点.已知AMuuuruuuur4b2MN,且OAOM.31C的离心率e;()求椭圆(2)若SAMNSPOE10a,求椭圆C的标准方程.319.已知各项均为正数的无量数列{an}的前n项和为Sn,且知足a1a(此中a为常数),nSn1(n1)Snn(n1)(nN*).数列{bn}知足bnan2an21(nN*).anan1(1)证明数列{an}是等差数列,并求出{an}的通项公式;(2)若无量等比数列{cn}知足:对随意的nN*,数列{b}中总存在两个不一样的项b,nsb(s,tN*)使得bscnb,求{c}的公比q.ttn20.已知函数f(x)lnx,此中a为常数.(xa)2(1)若a0,求函数f(x)的极值;(2)若函数

f(x)

在(0,

a)上单一递加,务实数

a的取值范围;(3)若

a

1,设函数

f(x)在(0,1)上的极值点为

x0,求证:

f(x0)

2.常州市教育学会学业水平监测数学Ⅱ(附带题)21.【选做题】在A、B、C、D四小题只好选做两题,每题10分,合计20分.请......在答题卡指定地区内作答,解答时应写出文字说明、证明过程或演算步骤........A.选修4-1:几何证明选讲在ABC中,N是边AC上一点,且CN2AN,AB与NBC的外接圆相切,求BC的BN值.B.选修4-2:矩阵与变换42已知矩阵A不存在逆矩阵,求:11)实数a的值;(2)矩阵A的特点向量.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,成立极坐标系.C的参曲线x2cos1为参数),直线l的极坐标方程为sin()2,直线l与数方程为(y2sin4曲线C交于M,N两点,求MN的长.D.选修4-5:不等式选讲已知a0,b0,求证:a3b3ab.a2b2【必做题】第22题、第23题,每题10分,合计20分.请在答题卡指定地区内作.......答,解答时应写出文字说明、证明过程或演算步骤.22.已知正四棱锥PABCD的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按以下方式定义随机变量的值:若这两条棱所在的直线订交,则的值是这两条棱所在直线的夹角大小(弧度制);若这两条棱所在的直线平行,则0;若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).(1)求P(0)的值;(2)求随机变量的散布列及数学希望E( ).23.记(x1)(x1)(x1)(n2且nN*)的睁开式中含x项的系数为Sn,含x22n项的系数为Tn.(1)求Sn;(2)若Tnan2bnc,对n2,3,4成立,务实数a,b,c的值;Sn(3)对(2)中的实数a,b,c用数字概括法证明:对随意n2且nN*,Tnan2bncSn都成立.常州市教育学会学业水平监测高三数学参照答案一、填空题1.{2}2.真3.14.25.756.67.38.39.(1,2)10.[2,8]11.13e12.413.[5,25]14.5238416二、解答题15.解:(1)3bsinCcosBc由正弦定理得3sinBsinCcosBsinCsinC,ABC中,sinC0,所以3sinBcosB1s,所以sin(B)1B5,6,6266B6,所以B;63(2)由于b2ac,由正弦定理得sin2BsinAsinC,11cosAcosCcosAsinCsinAcosCsin(AC)sin(B)tanAtanCsinAsinCsinAsinCsinAsinCsinAsinCsinBsinAsinC11sinB1123所以,tanAtanCsin2BsinB33.216.(1)证明:PC平面ABCD,BD平面ABCD,所以BDPC,记AC,BD交于点O,平行四边形对角线相互均分,则O为BD的中点,又PBD中,PBPD,所以BDOP,又PCIOPP,PC,OP平面PAC,所以BD平面PAC,又AC平面PAC所以BDAC;(2)四边形ABCD是平行四边形,所以AD//BC,又AD平面PBC,BC平面PBC,所以AD//平面PBC,又AD平面ADQF,平面ADQFI平面PBCQF,所以AD//QF,又AD//BC,所以QF//BC.17.解:(1AB'AB1.813,所以OB'6)由题意AB//OM,则OM3.6,OA,OB'2小明在地面上的身影AB'扫过的图形是圆环,其面积为623227(平方米);(2)经过t秒,小明走到了A0B0'AB1A0处,身影为A0B0',由(1)知OB0OM,所以2f(t)A0B0'OA0OA2AA022OAAA0cosOAA0.32273化简得f(t)t23t9,0t10,f(t)t,当t时,f(t)的最小224值为33.2答:f(t)t23t9,0t3f(t)的最小值为33(米).10,当t(秒)时,22x2y21c218.解:(1)由题意a2b2,消去y得x2axb20,解得x1a,aaa2(x2y2(2))22ab2x2c2所以xMab2(a,0)uuuruuuurxMxAab2a42c233;c2,OAOMc2b,a2,所以e342(2)由(1)M(2b,22b),右准线方程为x43b,333直线MN的方程为y2x,所以P(43b,46b),33SPOF1OFyP3b46b22b2223SAMN2SAOMOAyM2b22b42b2,33所以22b242b210a,102b220b,所以b2,a223333椭圆C的标准方程为x2y21.8219.解:(1)方法一:由于nSn1(n1)Snn(n1)①,所以(n1)Sn2(n2)Sn1(n1)(n2)②,由②-①得,(n+1)Sn2nSn1(n2)Sn1(n1)Sn2(n1),即(n1)Sn2(2n2)Sn1(n1)Sn2(n1),又n10,则Sn22Sn1Sn2,即an2an12.在nSn1(n1)Snn(n1)中令n1得,a1a22a12,即a2a12.综上,对随意nN*,都有an1an2,故数列{an}是以2为公差的等差数列.又a1a,则an2n2a.方法二:由于nSn1(n1)Snn(n1),所以Sn1Sn1,又S1a1a,n1nSn则数列是以a为首项,1为公差的等差数列,n所以Snn1a,即Snn2(a1)n.n当n2时,anSnSn12n2a,又a1a也切合上式,故an2n2a(nN*).故对随意nN*,都有aan2,即数列{a}是以2为公差的等差数列.n1n(2)令enan112,则数列{en}是递减数列,所以1en2an2a1.2na观察函数yx11),由于y'11x210,所以yx1(1,)上递加,(xx2x2在xx所以2en124,进而bnen14.ena(a2)en2,2a(a2)由于对随意nN*,总存在数列{bn}中的两个不一样项bs,bt,使得bscnbt,所以对随意的nN*都有cn2,24,显然q0.2)a(a若q1,当n1logq12时,a(a2)有cnc1qn12qn1242),不切合题意,舍去;a(a若0q1,当n1logqa22a时,a22a2有cnc1qn124qn12,不切合题意,舍去;a(a2)故q1.20.解:(1)当a0时,f(x)lnx),x,定义域为(0,12lnxf'(x)0,得xe.x3,令f'(x)x(0,e)e(e,)f(x)0f'(x)Z1]极大值2e当xe时,f(x)的极大值为1,无极小值.2e(2)1a2lnx,由题意f'(x)0对x(0,a)恒成立.f'(x)xa)3(xQx(0,a),(xa)30,a2lnx0对x(0,a)恒成立,1xa2xlnxx对x(0,a)恒成立.令g(x)2xlnxx,x(0,a),则g'(x)2lnx1,11①若0ae2,即0ae2,则g'(x)2lnx10对x(0,a)恒成立,g(x)2xlnxx在(0,a)上单一递减,则a②若当01

2(a)ln(a)(a),0ln(a),a1与1ae2矛盾,舍去;111ae2,即ae2,令g'(x)2lnx10,得xe2,1xe2时,g'(x)2lnx10,g(x)2xlnxx单一递减,当e2xa时,g'(x)2lnx10,g(x)2xlnxx单一递加,111111g(e2)2e2ln(e2)e22e2当xe2时,[g(x)]min,11a2e2.综上a2e2.3a1时,f(x)lnxx12xlnx()当(x2f'(x)x(x3,1)1)令h(x)x12xlnx,x(0,1),则h'(x)12(lnx1)2lnx1,令h'(x)0,得1xe2,11时,h'(x)1①当e2x0,h(x)x12xlnx单一递减,h(x)(0,2e21],f'(x)x12xlnx0恒成立,f(x)lnx132单一递减,且f(x)f(e2).x(x1)(x1)1②当0xe2时,h'(x)0,h(x)x12xlnx单一递加,11111h(e2)e212e2ln(e2)2e210又h(e2)e212e2ln(e2)510,e21存在独一x0(0,e2),使得h(x0)0,f'(x0)0,当0xx0时,f'(x0)0,f(x)lnx单一递加,(x1)21f'(x0)0f(x)lnx2单一递减,且1当x0xe2时,,(xf(x)f(e2),1)由①和②可知,f(x)lnx2在(0,x0)单一递加,在(x0,1)上单一递减,(x1)当xx0时,f(x)lnx取极大值.(x1)2Qh(x0)x012x0lnx00,lnx0x01,2x0f(x0)lnx0112x0(x01)11,22(x02(x01))22又x0(0,2e2),2(x01)21(1,0),f(x0)112.12222(x0)22常州市教育学会学业水平监测高三数学Ⅱ(附带题)参照答案.NBC外接圆为O,AB、AC分别是圆O的切线和割线,所以AB2ANAC,解:记又AA,所以ABN与ACB相像,所以BCABAC,所以BNANABBC2ACACBCAB3,BNANABAN3.BN42B.解:(1)由题意0,即42a0,解得a2;a1(2)420,即(4)(1)40,所以250,解得10,25210时,4x2y02x,属于0的一个特点向量为112xy,y1;025时,x2y02y,属于0的一个特点向量为222x4y,x1.01解:曲线C:(x1)2y24,直线l:xy20,圆心C(1,0)到直线l的距离为C.d1022MN2r2d224114.1212,所以弦长22D.证明:a0,b0,不如设ab0,则5511a2b2,a2b2,由排序不等式得51

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论