版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市三古中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.
若i为虚数单位,m,nR,且=n+i
则|m-n|=A.0
B.1
C.2
D.3参考答案:D略2.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在 B.有1条 C.有2条 D.有无数条参考答案:D【考点】平面的基本性质及推论.【分析】由已知中E,F分别为棱AB,CC1的中点,结合正方体的结构特征易得平面ADD1A1与平面D1EF相交,由公理3,可得两个平面必有交线l,由线面平行的判定定理在平面ADD1A1内,只要与l平行的直线均满足条件,进而得到答案.【解答】解:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与面D1EF平行,故选:D3.已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,且PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是()A. B. C. D.参考答案:B【考点】K4:椭圆的简单性质.【分析】令x=﹣c,代入椭圆方程,解得|PF|,再由|AF|=a+c,列出方程,再由离心率公式,即可得到.【解答】解:由于PF⊥x轴,则令x=﹣c,代入椭圆方程,解得,y2=b2(1﹣)=,y=,又|PF|=|AF|,即=(a+c),即有4(a2﹣c2)=a2+ac,即有(3a﹣4c)(a+c)=0,则e=.故选B.4.已知平面上三点A、B、C满足,,,则的值等于
(
)A.25
B.24
C.-25
D.-24参考答案:C5.某程序的框图如图所示,运行该程序时,若输入的x=0.1,则运行后输出的y值是A.﹣1 B.0.5
C.2
D.10参考答案:A6.极坐标方程和参数方程(为参数)所表示的图形分别是(
)A.圆、直线
B.直线、圆
C.圆、圆
D.直线、直线参考答案:A略7.点P到点A(),B()及到直线的距离都相等,如果这样的点恰好只有一个,那么a的值是
(
)A.B.
C.或
D.或参考答案:D8.设函数可导,则等于(
)A.
B.
C.
D.参考答案:A9.已知周长为c,且它的内切圆半径为r,则三角形的面积为.类似地,若四面体的表面积为,内切球半径为,则其体积是(
)
A.
B.
C.3
D.
参考答案:B10.某单位员工按年龄分为A、B、C三个等级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从C等级组中应抽取的样本数为()A.2 B.4 C.8 D.10参考答案:A【考点】分层抽样方法.【分析】利用抽样过程中每个个体被抽到的可能性相同,即可得出结论.【解答】解:由题意,从C等级组中应抽取的样本数为20×=2,故选A.二、填空题:本大题共7小题,每小题4分,共28分11.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如=8.则为
参考答案:200712.已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为_____.参考答案:13.已知圆=0与抛物线的准线相切,则___参考答案:214.A,B,C,D,E等5名同学坐成一排照相,要求学生A,B不能同时坐在两旁,也不能相邻而坐,则这5名同学坐成一排的不同坐法共有
种.(用数学作答)参考答案:60【考点】D8:排列、组合的实际应用.【分析】先排C,D,E学生,有A33种坐法,A,B不能同时坐在两旁,也不能相邻而坐,有A42﹣A22种坐法,由分步计数原理计算可得答案.【解答】解:先排C,D,E学生,有A33种坐法,A,B不能同时坐在两旁,也不能相邻而坐,有A42﹣A22种坐法,则共有A33(A42﹣A22)=60种坐法.故答案为60.15.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标,则点P落在由和两坐标轴所围成的三角形内部(不含边界)的概率为________.参考答案:【分析】由掷骰子的情况得到基本事件总数,并且求得点落在指定区域的事件数,利用古典概型求解.【详解】以连续两次掷骰子分别得到的点数,作为点P的坐标,共有36个点,而点P落在由和两坐标轴所围成的三角形内部(不含边界),有3个点:,所以概率故得解.【点睛】本题考查古典概型,属于基础题.16.已知一个平面与正方体的12条棱的夹角均为,那么为
.参考答案:17.双曲线3x2﹣y2=3的渐近线方程是.参考答案:y=±x【考点】双曲线的简单性质.【分析】双曲线3x2﹣y2=3的标准形式为,其渐近线方程是,整理后就得到双曲线的渐近线.【解答】解:双曲线3x2﹣y2=3的标准形式为,其渐近线方程是,整理得.故答案为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数;(I)若>0,试判断f(x)在定义域内的单调性;(II)若f(x)在[1,e]上的最小值为,求的值;(III)若f(x)<x2在(1,上恒成立,求a的取值范围.参考答案:.解:(I)由题意f(x)的定义域为(0,+∞),且f'(x)=…(2分)∵a>0,∴f'(x)>0,故f(x)在(0,+∞)上是单调递增函数…(4分)(II)由(I)可知,f′(x)=.(1)若a≥﹣1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,∴[f(x)]min=f(1)=﹣a=,∴a=﹣(舍去)…(5分)(2)若a≤﹣e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,∴[f(x)]min=f(e)=1﹣(舍去)…(6分)(3)若﹣e<a<﹣1,令f'(x)=0得x=﹣a,当1<x<﹣a时,f'(x)<0,∴f(x)在(1,﹣a)上为减函数,f(x)在(﹣a,e)上为增函数,∴[f(x)]min=f(﹣a)=ln(﹣a)+1=∴[f(x)]min=f(﹣a)=ln(﹣a)+1=∴a=﹣.…(8分)
略19.如图,椭圆经过点离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为则存在常数,使得求的值
参考答案:(1)
(2)F,
,而,
同理
所以而M()故=2略20.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【分析】(1)根据双曲线的标准方程进行求解即可.(2)根据复合命题真假关系得到p,q两命题应一真一假,进行求解即可.【解答】解:(1)由已知方程表示焦点在y轴上的双曲线,则,得,得m<﹣3,即q:m<﹣3.(2)若方程x2+2mx+(m+2)=0有两个不等的正根则,解得﹣2<m<﹣1,即p:﹣2<m<﹣1.因p或q为真,所以p、q至少有一个为真.又p且q为假,所以p,q至少有一个为假.因此,p,q两命题应一真一假,当p为真,q为假时,,解得﹣2<m<﹣1;当p为假,q为真时,,解得m<﹣3.综上,﹣2<m<﹣1或m<﹣3.21.(本小题10分)已知为复数,为纯虚数,,且,求复数.参考答案:设,则=为纯虚数,所以,因为,所以;又。解得
所以22.已知函数,f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*)(I)求证数列{}是等差数列,并求数列{an}的通项公式;(II)记Sn=a1a2+a2a3+..anan+1,求Sn.参考答案:【考点】数列与函数的综合;数列的求和.【专题】综合题.【分析】(I)直接利用an+1=f(an)得到.再对其取倒数整理即可证数列{}是等差数列;进而求出数列{an}的通项公式;(II)利用(I)的结论以及所问问题的形式,直接利用裂项相消求和法即可求Sn.【解答】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职工业机器人技术(系统集成)试题及答案
- 2026年化工安全(化工安全操作规程)试题及答案
- 2025年大学心理学(管理心理学)试题及答案
- 2026年智能车库门控制系统项目评估报告
- 2026年智能睡眠环境控制器项目公司成立分析报告
- 2026年烘焙工艺(面包整形技术)试题及答案
- 2025年大学材料科学与工程(焊接理论)试题及答案
- 2025年大学健康管理(健康管理实操)试题及答案
- 多病原体协同感染暴发的防控策略
- 2025年中职数控技术(加工工艺)试题及答案
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 小学四年级语文上册期末测试卷(可打印)
- (高清版)TDT 1013-2013 土地整治项目验收规程
- 国家开放大学电大《计算机应用基础(本) 》 终结性考试试题答案(完整版)
- 《建筑基坑降水工程技术规程》DBT29-229-2014
- 防污闪涂料施工技术措施
- 2023年广东学业水平考试物理常考知识点
- 中外政治思想史-复习资料
- GB/T 12385-2008管法兰用垫片密封性能试验方法
- 中国近代史期末复习(上)(第16-20课)【知识建构+备课精研】 高一历史上学期期末 复习 (中外历史纲要上)
- 《LED的基础知识》课件
评论
0/150
提交评论