版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习第2章第3课时函数的单调性与最值文-A3演示文稿设计与制作第3课时函数的单调性与最值第
课时函数的单调性与最值3考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考1.函数的单调性(1)单调函数的定义f(x1)<f(x2)f(x1)>f(x2)增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有___________,那么就说函数f(x)在区间D上是增函数__________,那么就说函数f(x)在区间D上是减函数(2)单调性、单调区间的定义若函数f(x)在区间D上是________或________,则称函数f(x)在这一区间上具有(严格的)单调性,________
叫做f(x)的单调区间.区间D增函数减函数思考感悟1.函数f(x)在区间[a,b]上单调递增,与函数f(x)的单调递增区间为[a,b]含义相同吗?提示:不相同,f(x)在区间[a,b]上单调递增并不能排除f(x)在其他区间单调递增,而f(x)的单调递增区间为[a,b]意味着f(x)在其他区间不可能单调递增.前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有__________;(2)存在x0∈I,使得__________(1)对于任意x∈I,都有_________;(2)存在x0∈I,使得___________结论M为最大值M为最小值f(x)≤Mf(x0)=Mf(x)≥Mf(x0)=M2.函数的最值思考感悟2.函数的最值与函数值域有何关系?提示:函数的最值与函数的值域是关联的,求出了闭区间上连续函数的值域也就有了函数的最值,但只有了函数的最大(小)值,未必能求出函数的值域.考点探究·挑战高考函数的单调性用以揭示随着自变量的增大,函数值的增大与减小的规律.在定义区间上任取x1、x2,且x1<x2的条件下,判断并证明f(x1)<f(x2)或f(x1)>f(x2),这一过程就是实施不等式的变换过程.函数单调性的判断与证明考点一考点突跛例1【思路分析】利用定义进行判断,主要判定f(x2)-f(x1)的正负.【规律小结】用定义证明函数单调性的一般步骤:(1)取值:即设x1,x2是该区间内的任意两个值,且x1<x2.(2)作差:即f(x2)-f(x1)(或f(x1)-f(x2)),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形.(3)定号:根据给定的区间和x2-x1的符号,确定差f(x2)-f(x1)(或f(x1)-f(x2))的符号.当符号不确定时,可以进行分类讨论.(4)判断:根据定义得出结论.互动探究本例条件“x>0”改为“x<0”,试判断f(x)的单调性.在求函数的单调区间(即判断函数的单调性)时,一般可以应用以下方法:(1)定义法;(2)图象法;(3)借助其他函数的单调性判断法;(4)利用导数法等.求函数的单调区间考点二例2【思路分析】
(1)利用图象法,(2)利用导数法.【误区警示】确定函数的单调区间时应注意:(1)必须在定义域内研究.(2)对于同增(减)的不连续的单调区间不能写成并集,只能分开写.函数的最值求法:(1)若函数是二次函数或可化为二次函数型的函数,常用配方法.(2)函数单调性的变化是求最值和值域的主要依据,函数的单调区间求出后,再判断其增减性是求最值和值域的前提,当然,函数图象是函数单调性的最直观体现.求函数的最值考点三(3)基本不等式法:当函数是分式形式且分子、分母不同次时常用此法.(4)导数法:当函数较复杂(如指数、对数函数与多项式结合)时,一般采用此法.(5)数形结合法:画出函数图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.例3【规律小结】
(1)求一个函数的最值时,应首先考虑函数的定义域.
(2)函数的最值是函数值域中的一个取值,是自变量x取了某个值时的对应值,故函数取得最值时,一定有相应的x的值.方法感悟方法技巧1.求函数的单调区间首先应注意函数的定义域,函数的增减区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间(如例2(1)).常用方法有:根据定义,利用图象和单调函数的性质,还可以利用导数的性质(如例2(2)).2.复合函数的单调性对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或为减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称为:同增异减.考向瞭望·把脉高考考情分析从近几年的广东高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高,客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测2012年广东高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.规范解答例(2010年高考大纲全国卷Ⅱ)(本题满分12分)已知函数f(x)=x3-3ax2+3x+1.(1)设a=2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.名师预测1.函数y=x2+2x-3(x>0)的单调增区间是(
)A.(0,+∞)
B.(1,+∞)C.(-∞,-1) D.(-∞,-3]答案:A答案:D答案:A感谢观看谢谢大家A3演示文稿设计与制作信息技术2.0微能力认证作业中小学教师继续教育参考资料高考数学总复习第课时直接证明与间接证明文-A3演示文稿设计与制作第6课时直接证明与间接证明第6课时直接证明与间接证明考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考证明的结论推理论证成立充分条件内容综合法分析法文字语言因为…所以…或由…得…要证…只需证即证…思考感悟综合法和分析法的区别与联系是什么?提示:综合法的特点是:从“已知”看“可知”,逐步推向“未知”.其逐步推理实际上是寻找它的必要条件.分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”.其逐步推理实际上是寻求它的充分条件.在解决问题时,经常把综合法和分析法综合起来使用.2.间接证明反证法:假设原命题_______
(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_____.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.不成立矛盾考点探究·挑战高考综合法考点一考点突破综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理等,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.例1分析法考点二分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要证……只需……”或“⇐”.例2【思路分析】
ab⇔a·b=0,利用a2=|a|2求证.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,显然成立.故原不等式得证.【误区警示】本题从要证明的结论出发,探求使结论成立的充分条件,最后找到的恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.反证法考点三反证法体现了正难则反的思维方法,用反证法证明问题的一般步骤是:(1)分清问题的条件和结论;(2)假定所要证的结论不成立,而设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误.既然结论的反面不成立,从而证明了原结论成立(结论成立).例3【思路分析】
(1)利用求和公式先求公差d,(2)利用反证法证明.【名师点评】当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.方法感悟方法技巧1.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁琐;综合法从条件推出结论,较简洁地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”…“即要证”…“就要证”等分析得到一个明显成立的结论P,再说明所要证明的数学问题成立.失误防范1.反证法证明中要注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.2.常见的“结论词”与“反设词”原结论词反设词原结论词反设词至少有一个一个也没有对所有x成立存在某个x不成立至多有一个至少有两个对任意x不成立存在某个x成立至少有n个至多有n-1个p或q綈p且綈q至多有n个至少有n+1个p且q綈p或綈q考向瞭望·把脉高考考情分析从近几年的高考试题来看,综合法、反证法证明问题是高考的热点,题型大多为解答题,难度为中、高档;主要是在知识交汇点处命题,像数列,立体几何中的平行、垂直,不等式,解析几何等都有可能考查,在考查数学基本概念的同时,注重考查等价转化、分类讨论思想以及学生的逻辑推理能力.预测2012年广东高考仍将以综合法证明为主要考点,偶尔会出现反证法证明的题目,重
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit6第3课时(GrammarFocus-4c)(教学设计)英语鲁教版五四学制九年级全一册
- Unit5课时1SectionA(1a-Pronunciation)教学设计-七年级英语上册(人教版2024)
- 塑料户外野营折叠桌创新创业项目商业计划书
- 建筑工地塑胶工具模拟创新创业项目商业计划书
- 搪瓷釉料配色机创新创业项目商业计划书
- Unit3课时6SectionB3a-3c(教学设计)英语人教版2024八年级上册
- 某工程混凝土施工方案试卷教案
- 深度解析301328维峰电子2024年三季度现金流量报告-百度搜索数据洞悉市场趋势与商业洞察
- 新疆乌鲁木齐市第四中学2026届化学高三第一学期期末达标检测模拟试题含解析
- 新媒体环境下品牌推广实战方案
- 2022年高考真题-数学(新高考Ⅰ卷)+无答案
- 广州市天河区教育系统校园招聘(北京和武汉考点)笔试试题及答案2021
- (医学课件)眼眶解剖
- 教科版科学三年级上册第一单元《水》单元作业设计
- 2022年湖州市安吉县辅警考试试卷真题
- 文化艺术培训学校申办材料38223知识分享
- 项目三拆装与维护台虎钳
- 核工业无损检测VTⅡ级-试题
- GB/T 3785.1-2023电声学声级计第1部分:规范
- 总糖和还原糖的测定及葡萄糖标准曲线的绘制-3,5-二硝基水杨酸法课件
- 木瓜蛋白酶提取实验PPT
评论
0/150
提交评论