




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3实数第一课时1、填空:(有理数的两种分类)2、探究使用计算器计算,把下列有理数写成小数的形式,你有什么发现?创设情景明确目标1.了解无理数和实数的概念.2.知道实数与数轴上的点具有一一对应的关系,
体会“数形结合”的数学思想.学习目标有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?合作探究达成目标探究点一实数的概念及分类你认为小数除了上述类型外,还会有什么类型的小数?无理数的概念:无限不循环小数叫无理数.因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?5,,0,,,,,-
π,……(相邻两个1之间0的个数逐次加1).例1
下列实数中,哪些是有理数?哪些是无理数?填写下表:探究点一实数的概念及分类无理数有哪几种呈现形式?有理数和无理数有什么区别?无理数的呈现形式有:1.含π及与π有关的代数式;2.含根号且开不尽方的数;3.无限不循环小数.
有理数和无理数的区别在于:1.把有理数和无理数都写成小数形式时,有理数能写成有限小数;2.所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?探究点二实数与数轴的对应关系为什么?直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O'对应的数是多少?实数与数轴上的有什么关系?探究点二实数与数轴的对应关系每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数;当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都是表示一个实数.与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.1.概念:无理数和实数.2.特点:有理数和无理数.3.关系:实数与数轴的对应关系.4.数学思想:
类比、数形结合、分类的思想.总结梳理内化目标上交作业:教科书习题6.3第1,2题;课后作业1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数包括正无理数、零、负无理数;(3)带根号的数都是无理数.达标检测反思目标
轴对称
引言
对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!引出新知探索新知问题1如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?
追问
你能举出一些轴对称图形的例子吗?
探索新知如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.
共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.
探索新知问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?追问1你能再举出一些两个图形成轴对称的例子吗?探索新知把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
两者的区别:
轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?
两者的联系:
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.
探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?追问1你能说明其中的道理吗?
探索新知问题3如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C
的对称点,线段AA′,BB′,CC′与直线MN有什么关系?ABCMNPA′B′C′探索新知追问2上面的问题说明“如果△ABC和△A′B′C′关于直线MN对称,那么,直线MN垂直线段AA′,BB′和CC′,并且直线MN还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?
ABCMNPA′B′C′经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
探索新知问题3如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C
的对称点,线段AA′,BB′,CC′与直线MN有什么关系?ABCMNPA′B′C′探索新知追问3你能用数学语言概括前面的结论吗?
成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.ABCMNPA′B′C′
结论:直线l垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l是线段AA′,BB′的垂直平分线).探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?
ABlA′B′追问你能用数学语言概括前面的结论吗?探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?
ABlA′B′
轴对称图形的性质:
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?
ABlA′B′课堂练习练习1如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴.
课堂练习练习2如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年琼海市人民医院招聘真题
- 2024年河南郑州第六人民医院招聘真题
- 2025年医学信息学医学信息技术应用与发展答案及解析
- 2025年急诊科重症监护仪器操作技能考核答案及解析
- 2025年秋季高一开学摸底考数学试题(上海)及答案
- 2025年医学心理学科学科患者心理健康评估策略考试答案及解析
- 2024春七年级语文下册 第5单元 19一棵小桃树说课稿 新人教版
- 2025标准版购销合同范本
- 2025年医学影像科影像学报告撰写模拟考试答案及解析
- 2025设备监理之合同订立的程序示范
- 2024年中级通信专业实务(终端与业务)考试题库大全(含答案)
- 【退休欢送会】课件
- 中小学幼儿园食堂食品安全培训课件
- 《国际商务单证》课件
- 电力增容项目施工组织设计
- 2022版ISO27001信息安全管理体系基础培训课件
- 论高校思政教育宏大叙事的有效性建构
- 塔吊拆卸安全专项施工方案
- 《语言学概论》教案(完整版)
- 大件设备海运包装方案
- 输液港运用及护理
评论
0/150
提交评论