电磁场与电磁波第17讲时谐场课件_第1页
电磁场与电磁波第17讲时谐场课件_第2页
电磁场与电磁波第17讲时谐场课件_第3页
电磁场与电磁波第17讲时谐场课件_第4页
电磁场与电磁波第17讲时谐场课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FieldandWaveElectromagnetic电磁场与电磁波第17讲11.Faraday’sLawofElectromagneticInductionReview22.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform

SignificanceFaraday’slaw(电磁感应定律)Ampere’scircuitallaw(全电流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通连续性原理)34.PotentialFunctions5.WaveEquationsandTheirSolutions4Maxwell’sequationsandalltheequationsderivedfromthemsofarinthischapterholdforelectromagneticquantitieswithanarbitrarytime-dependence(时间任意相关).Theactualtypeoftimefunctionsthatthefieldquantitiesassumedependson(取决于)thesource(源)functions

andJ.Inengineering,oneofthe

mostimportant

casesoftime-varyingelectromagneticfieldsisthe

time-harmonic(sinusoidal)field(时谐场、正弦场).Inthistypeoffield,the

excitation

sourcevaries

sinusoidally

intimewith

a

singlefrequency(单一频率).In

alinearsystem(线性系统),asinusoidallyvarying

source

generates

fields

thatalsovarysinusoidallyintimeatallpointsinthesystem(正弦变化的源产生正弦变化的场).1)whatisTime-HarmonicFields3.Time-HarmonicFields52)讨论时谐场(正弦信号)的原因Whenfieldsareexaminedinthismanner,thereisnolossingeneralityas(a)Theyareeasytogenerate(b)anytime-varyingperiodicfunctioncanberepresentedbyaFourierseriesintermsofsinusoidalfunctions(c)theprincipleofsuperpositioncanbeappliedunderlinearconditions.Inotherwords,wecanobtainthecompleteresponseoftimevaryingperiodicfieldsbyusinglinearcombinationsofmonochromaticresponses(a)正弦信号容易产生,50Hz交流电,通信的载波都是正弦信号(b)从信号分析的角度来看,正弦信号是一种简单基本的信号。正弦信号进行各种运算(加减微分积分后仍为同频率正弦信号)(c)傅立叶分析:任意周期信号分解为不同频率的正弦之和(d)线性系统的叠加原理63.1

电路中的相量表达式Incircuittheory,youhavealreadyusedthephasornotation(相量)torepresentvoltagesandcurrentsvaryingsinusoidally

intime(1)Instantaneous(time-dependent)expressionofasinusoidalscalarquantity(瞬时值)三角函数表达式3Parameters:

angularfrequency:

amplitude:Im

phase:(2)

复数的表示xjyP(x,y)复平面上一点P7(3)正弦表达式和相量表达式的对应关系相量的模正弦量的幅值初位相复角频率是已知?频率相量乘以ejt,再取实部8EXAMPLE7-6P337-33893.2

Time-harmonicElectromagneticsFieldvectorsthatvarywithspacecoordinatesandaresinusoidalfunctionsoftimecansimilarlyberepresentedbyvectorphasors(矢量相量)thatdependonspacecoordinatesbutnotontime.Asanexample,wecanwriteatime-harmonicE

fieldreferringtocostaswhereE(x,y,z)isavectorphasor

(矢量相量)thatcontainsinformationondirection(方向),magnitude(振幅),andphase(相位).Phasorsare,ingeneral,complexquantities.weseethat,ifE(x,y,z,t)istoberepresentedbythevectorphasor

E(x,y,z),thenE(x,y,z,t)/tandE(x,y,z,t)dtwouldberepresentedby,respectively,vectorphasors

jE(x,y,z)

andE(x,y,z)/j.Higher-orderdifferentiationsandintegrationswithrespecttowouldberepresented,respectively,bymultiplicationsanddivisionsofthephasor

E(x,y,z)byhigherpowersofj.1011已知正弦电磁场的场与源的频率相同,因此可用复矢量形式表示麦克斯韦方程。考虑到正弦时间函数的时间导数为或因此,麦克斯韦第一方程可表示为上式对于任何时刻均成立,实部符号可以消去,即12瞬时值由相量值代替时间求导由jω代替Wenowwritetime-harmonicMaxwell’sequations(时谐麦克斯韦方程组)intermsofvectorfieldphasors(E,H)andsourcephasors(,J)inasimple(linear,isotropic,andhomogenous)mediumasfollows.13Thetime-harmonicwaveequations(时谐波动方程)forEandHbecome,respectively,Thetime-harmonicwaveequationsforscalarpotentialVandvectorpotentialAbecome,respectively,Letiscalledthewavenumber.14Then

Considerthetimedelayfactor,forasinusoidalfunctionitleadstoaphasedelayof.

Weobtain15ThecomplexLorentzconditionis

Thecomplexelectricandmagneticfieldscanbeexpressedintermsofthecomplexpotentialsas

163.3

source-free(无源)fieldsinsimplemediaInasimple,nonconducting(非导电)source-freemediumcharacterizedby=0,J=0,=0,thetime-harmonicMaxwell’sequationsbecome

17whicharehomogeneousvectorHelmholtz’sequations(齐次矢量亥姆霍兹方程).andwaveequationsforAandV

becomeThetime-harmonicwaveequationsforEandHbecome,respectively,Letiscalledthewavenumber.18Ifthesimplemediumisconducting(0)(导电介质),acurrentJ=Ewillflow,andtheequationshouldbechangedtowithTheotherthreeequationsinMaxwell’sequationareunchanged.Hence,allthepreviousequationsfornonconducting(非导电)mediawillapplytoconductingmediaifisreplacedbythecomplexpermittivity

c.Meanwhile,thereal(实数)

wavenumber

kinthehelmholtz’sequationsshouldbechangedtoacomplex(复数)

wavenumber:19Theratio’’/’

iscalledalosstangent(损耗正切)becauseitisameasureofthepowerlossinthemedium:Thequantityc

maybecalledthelossangle(损耗角).Amediumissaidtobeagoodconductor(良导体)if>>,andagoodinsulator(良绝缘体)if<<.Thus,amaterialmaybeagoodconductoratlowfrequencies(低频)butmayhavethepropertiesofalossydielectricatveryhighfrequencies(高频).201.Faraday’sLawofElectromagneticInductionReview212.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform

SignificanceFaraday’slaw(电磁感应定律)Ampere’scircuitallaw(全电流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通连续性原理)224.PotentialFunctions5.WaveEquationsandTheirSolutions236.Time-HarmonicFields相量的模正弦量的幅值初位相复角频率是已知?频率相量乘以ejt,再取实部24dx25P.7-7P34926P.7-13P35127梯度运算符合以下规则:C为常数散度运算规则旋度运算规则28P.7-25P3522930P.7-30P35331Theelectricfieldintensityinasource-freedielectric()regionisgivenas(V/m),whereangularfrequency,allareconstants.Find:Example.(1)Thephasorrepresentationofelectricfieldintens

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论