车辆跟车模型_第1页
车辆跟车模型_第2页
车辆跟车模型_第3页
车辆跟车模型_第4页
车辆跟车模型_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

车辆跟车模型第1页,课件共75页,创作于2023年2月目录

4.1跟驰模型的建立

4.2稳定性分析

4.3稳态流分析

4.4实验和观察

4.4.1跟驰实验

4.4.2宏观观测:单车道交通

4.5车辆自动跟驰

4.6结论第2页,课件共75页,创作于2023年2月

本章着重讨论单车道中一辆车紧跟另一辆车行驶的现象(车辆跟驰现象)。研究这个问题有很重要的意义,因为车辆跟驰相对简单,所以该方面的研究较多,而且已成功建立了数学模型。车辆跟驰现象有助于交通流的特性的了解。车辆跟驰现象通常发生在双车道或多车道上,无法超车或车辆被限制在单车道上行驶的情况。跟驰理论所研究的参数之一就是车辆在给定的速度V下跟驰行驶时的平均车头间距S,平均车头间距则可以用来估计单车道的通行能力。

第3页,课件共75页,创作于2023年2月在对速度—间距关系的研究中,单车道通行能力的估计基于如下方程:

C=1000V/S

(4.1)式中,C—单车道的通行能力(辆/小时)

V—速度(千米/小时)

S—平均车头间距(米)研究表明,速度—间距的关系可由下式表示:

S=α+βV+γV2

(4.2)式中,系数α,β,γ可取不同的值,其物理意义如下:

α

——有效的车辆长度

β

——反应时间

γ

——跟驰车辆最大减速度的二倍的倒数

第4页,课件共75页,创作于2023年2月附加项γV2保证了足够的间距,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,γ的经验值可近似取0.023s/ft。γ在非线性条件下的近似计算公式为:(4.3)式中,,分别为跟车和头车的最大减速度。以上提到的速度—间距模型适用于交通流中车辆速度相同或近似相同,各个车辆保持相同的间距(就是所说的稳态交通流)。

第5页,课件共75页,创作于2023年2月跟驰模型除了用于计算平均车头间距外,还可用于从微观角度对车辆跟驰现象进行分析,近似得出单车道交通流的宏观特性。总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。第6页,课件共75页,创作于2023年2月第一节跟驰模型的建立

单车道车辆跟驰理论认为,车头间距在100—125m以内时车辆间存在相互影响。该理论认为,在人—车—路的系统中,驾驶员是一个主动的,可预测的控制因素。在直线行驶、无超车的情况下,车辆跟驰行为可归为以下三个过程:感知阶段:在这个阶段,驾驶员通过视觉收集相关信息。信息包括前车车辆的行为和跟车车辆的行为,主要有前车的速度,加速度,车间距离,相对速度和一些变量(如:碰撞时间)等;第7页,课件共75页,创作于2023年2月决策阶段:驾驶员对所获得的信息进行分析,决定驾驶策略,与驾驶员对车辆特性的了解和驾驶技能、经验等有关。控制阶段:驾驶员根据自己的决策和头车及道路的状况等反馈信息,对车辆进行操纵控制。跟车模型认为在人—车单元中存在刺激—反应关系。其关系式为:反应=λ刺激(4.4)其中,λ是驾驶员对刺激的反应系数。第8页,课件共75页,创作于2023年2月驾驶员接受的刺激是指其前导车的加速或减速行为以及随之产生的两车之间的速度差或车间距离的变化;驾驶员的反应是指根据前车所作的加速或减速运动而对后车进行的相应操纵及其效果。

一般认为,在跟车模型中,驾驶员有两个任务:a)紧随前面的车辆行驶;b)避免碰撞。第9页,课件共75页,创作于2023年2月这就需要驾驶员在很短的时间δt内保持较小的平均相对速度U,即:

(4.5)

保持较小的值。从而使得“碰撞”时间:(4.6)

很大,车辆间距在时间δt内不会增加。第10页,课件共75页,创作于2023年2月由于相对速度在避免碰撞方面所起的重要作用,因而在刺激—反应关系中,相对速度成为首要的考虑因素。刺激函数也可以表示成如方程(4.15)的形式。即在给定的时间t内,刺激依赖于对相对速度的初始值的加权总数:

(4.7)其中,σ(t)是反应驾驶员对早期信息评估和处理的权重函数。驾驶员权衡过去和现在的信息,从而在未来的一定时间内作出反应。

第11页,课件共75页,创作于2023年2月图4.1相对速度刺激和时间权重函数图

第12页,课件共75页,创作于2023年2月

根据以上分析,刺激函数变为:(4.11)反应时间或延误的主要影响因素为驾驶员对刺激的反应。驾驶员得到刺激信息,然后在未来的一段时间内作出反应。通过延迟刺激,驾驶员得到较新的信息。驾驶员通过加速器和制动踏板对车辆进行直接控制,而且可以根据惯性原理得到变量的直接反馈信息,因而可以将反应函数看作跟车的加速度:(4.13)第13页,课件共75页,创作于2023年2月将式(4.11)和式(4.13)代入式(4.4),该刺激—反应公式转化为:(4.14)或写成:(4.15)方程(4.15)是对跟车理论中刺激—反应问题复杂现象的简单描述。跟车理论的一般形式可用传统控制理论框图表示,见图4.1a。方程(4.15)所示的线性跟驰模型表示为图4.1b。完善的跟车模型应包括一系列以便于建模描述车辆及道路的动态特性、驾驶员的生理心理特性和车辆间的配合。第14页,课件共75页,创作于2023年2月图4.1a)车辆跟驰框架图第15页,课件共75页,创作于2023年2月图4.1b)线形跟驰模型框架图第16页,课件共75页,创作于2023年2月第二节稳定性分析

本节讨论方程(4.15)所示的线性跟车模型的两类波动稳定性:局部稳定性和渐进稳定性。局部稳定性:关注跟驰车辆对它前面车辆运行波动的反应,即关注车辆间配合的局部行为。渐进稳定性:关注车队中每一辆车的波动特性在车队中的表现,即车队的整体波动性。如头车的波动在车队中的传播。第17页,课件共75页,创作于2023年2月一、局部稳定性

通过第一节的分析,得到线性车辆跟驰模型方程(4.15)。在线性跟车模型中,和分别表示t时刻前车和跟车的位移。反应时间为T,通过t=τT变换,方程(4.15)简化为:(4.16)这里C=λT,跟随车辆的局部行为的状态可以通过求解拉普拉斯变换方程(4.16)得到。比如,初始时头车和跟车以恒定的速度u运行,卡欧(Chow)给出了跟车的速度。由于卡欧(Chow)方程形式复杂,所以很难用它来描述物理特性。第18页,课件共75页,创作于2023年2月但是,如果给定跟车的初始状态,那么跟车的总体行为就可以被描述出来。一般认为初始状态是头车和跟车都以恒定的速度u行驶,对头车和跟车应用移动坐标系Z(t),跟车的加速度简化为:

(4.16a)其中,L-1表示拉普拉斯的逆变形。由于是一个不变的函数,所以拉普拉斯逆变换主要由来决定。特殊情况下,有:(4.17)

类似地,可以得到车辆速度和车辆间距的变化情况。车头间距的变化可由方程(4.17)得出。第19页,课件共75页,创作于2023年2月因此,可将拉普拉斯逆变换表示成ee。对于不同的C值,跟驰行驶两车的运动情况可分为四类:

a)如果C≤e-1(≈0.368),a0≤0,b0=0,间距不发生波动,振幅呈指数衰减;

b)如果e-1

<C<π/2,a0

<0,b0>0,间距发生波动,振幅呈指数衰减;

c)如果C=π/2,a0=0,b0>0,间距发生波动,振幅不变;

d)如果C>π/2,a0

>0,b0>0,间距发生波动,振幅增大。

根据以上结果,C值不同,跟驰车辆运动情况也就不同。要使跟随车辆间距不发生波动,必需满足C≤1/e。C继续增大时,间距发生波动且振幅急剧衰减。C<π/2时,振幅就会发生一定程度的衰减。第20页,课件共75页,创作于2023年2月关于波动行为的这些结果可以应用于跟车的速度、加速度和车头间距。因此,当C≤1/e,即车头间距不发生波动的情况下,车速由U变到V车头间距变化量为:

(4.18)

如果头车停车,其最终速度V=0,车头间距的总变化量为-U/λ。跟车为了避免与头车发生碰撞,车头间距最小值必须为U/λ。另外,在稳态交通流的限制下,为了车头间距尽可能小,λ应取尽可能大的值,其理想值为(eT)-1可能小。

第21页,课件共75页,创作于2023年2月注:2车跟随1车行使,反应时间T=1.5s,C=e-1,两车的初始速度均为u

图4.2为利用计算机模拟的方法给出的相关运动参数曲线。C=e-1,由前面所讲可知,属第一类,即车头间距不发生波动的情况。头车先减速行使然后加速到起始速度,采用恒定的加速度和减速度。实线代表头车,虚线代表跟车。由于C在车辆局部稳定的限制范围内,所以跟车的加速度和速度以及车头间距都没有发生波动。图4.2头车加速度波动方式及对两车运动的影响第22页,课件共75页,创作于2023年2月

注:该图与图4.2具有相同的头车速度

图4.3不同C值对应的车头间距变化

图4.3给出了另外四种不同C值的车头间距变化图。C分别取阻尼波动、恒幅波动和增幅波动几种情况的值。当C=0.5和0.8时,属第二种情况,间距发生波动,振幅急剧衰减;C=1.57(≈π/2)时,属第三种情况,间距发生波动,振幅不变:当C=1.60时,属第四种情况,间距发生波动,振幅增大。第23页,课件共75页,创作于2023年2月与其他控制相关的局部稳定性

由于驾驶员无法对相对加速度或车头间距的高阶导数作出正确的估计,因而他们对这些变量缺乏敏感性。所以车辆跟驰方程采用如下形式:(4.21)

其中,m=0,1,2,3…跟随车辆的加速度是车辆间距的m阶导数。m=1时,为线形跟车模型。当给定m值时,可以得到方程4.21的解:

(4.22)当m为偶数时,方程无解。因此,局部稳定性仅适用于间距、相对速度等的奇数阶导数,最小为m=3。结果显示,与车头间距变化相关的加速度是不稳定的。第24页,课件共75页,创作于2023年2月二、渐进稳定性

在讨论了线性跟车模型的局部稳定性之后,下面通过一列行驶的车队来讨论渐进稳定性。渐进稳定性是在研究一列车队速度波动的傅立叶系数时得到的。一列长度为N的车队的方程为:(4.23)其中,n=0,1,2,3,…N

这些方程的求解依赖于一列车队中头车车速u(t)和参数λ和T。无论车头间距为何初始值,如果发生振幅波动,那么车队后部的某一位置必定发生碰撞。当方程(4.23)的数值解可以确定碰撞发生的位置。第25页,课件共75页,创作于2023年2月

C=λT<0.5~0.52(一般取0.5)时,就可保证车辆的渐进稳定性。如图4.4所示,渐进稳定性的标准将两个参数确定的区域分成了稳定和不稳定两部分。图4.4渐进稳定性

可知,λT<e-1保证局部稳定性的同时也可以保证渐进稳定性。第26页,课件共75页,创作于2023年2月

为了说明以上的渐进稳定性理论,下面通过图示给出两组利用计算机模拟得到的数值计算结果。第27页,课件共75页,创作于2023年2月注:图中C采用三个不同的值。t=0,车头间距为21m。

图4.5线形跟驰模型车队中车头间距随时间的变化

图4.5列出了一列8辆车组成的车队中相邻车辆车头时距与时间的关系。分别取为0.368,0.5和0.75。头车n=1的初始波动方式与图4.2所示情况相同,即先减速然后加速到初始速度,因此加速度对时间的积分为0。第一种情况C=0.368(≈1/e),为不波动,局部稳定状态。第二种情况下C=0.5也就是渐进稳定性的极限处,出现高阻尼波动,振幅随着波动在车辆中的传播而衰减。第三种情况下C=0.75和图4.6中C=0.8很好地说明了波动的不稳定性。第28页,课件共75页,创作于2023年2月注:该图阐述了线性跟驰模型公式(4.23),C=0.80

图4.69辆车车队的渐进稳定性(C=0.80)图4.6(C=0.80)给出了9辆车组成的车队中每一辆车的运动轨迹,采用的坐标系是移动坐标系,坐标原点的速度与车队的初始速度u一致。当t=0时,所有的车辆都以速度u行驶,车头间距均为12m。头车在t=0时开始以4km/h/sec的减速度减速2s,速度从u变成u-8km/h,之后又加速到原速度u。所以头车的这种速度波动在车队中不稳定的传播,在头车发生第一次波动后大约24s时,第7辆车和第八辆车间的距离变为0,即车头间距等于车辆长度,此时发生碰撞。第29页,课件共75页,创作于2023年2月次最近车辆的配合

跟驰行使的车辆除受次最近车辆(直接在前面的车辆)的影响外,还会受次最近车辆(在前面的第二辆车)的影响。这种影响也可以列入模型中,那么跟驰模型可以写成:(4.29)其中,λ1

、λ2分别为跟驰车辆驾驶员对最近和次最近车辆刺激的反应强度系数。(4.30)当w趋近于0时,有(4.31)第30页,课件共75页,创作于2023年2月由此方程可以看出,次最近车辆的影响主要是将λ1增加到λ1+λ2。这就降低了λ1的作用,而且仍然可以保持渐进稳定。为了确定次最近车辆的影响程度,研究人员专门做了三车跟驰实验,这部分内容将在第四小节实验部分进行介绍.第31页,课件共75页,创作于2023年2月4.3稳态流分析

本节将利用单车道车辆跟驰模型讨论稳定流的特性,针对不同的交通流状态对跟驰模型进行必要的扩充和修正,并由此推导速度-间距(速度-密度),流量-密度关系式。第32页,课件共75页,创作于2023年2月线形跟弛模型前面已经给出了基于线形跟驰模型的单车道运动方程式:

(4.32)

其中,n=1,2,3…

运动过程中车队将有一种稳定状态进入另一种随机稳定的状态,为了使两种稳定状态联系起来,现假设在t=0时,每一辆车的速度为Ui,车头间距为Si。头车在t=0时速度开始改变(加速或减速),在一段时间t后其最终速度变为Uf。第33页,课件共75页,创作于2023年2月注:车队从一种稳定状态进入另一种稳定的状态,头车的速度下降了7.5m/s,11辆车的相邻间距也发生了变化,图4.811辆车的相邻间距图4.8描述了在这种状态下具体数量的变化。

第34页,课件共75页,创作于2023年2月

在从车速Ui变化到车速Uf的过程中,车头间距S从Si变为Sf即:(4.33)上式,可以从跟驰方程式中得到。公式4.33也综合考虑了公式4.32中的基本因素。这个公式只有在反应时间T准确时才有效,否则不能得到正确结论。而这种结果的前提条件是要求运动方程式中的交通流是稳定的。另外由于车头间距是交通流密度K的倒数,于是我们可以得到与公式4.33对应的速度-密度关系式,如4.34所示:公式4.33和4.34有如下重要性:

1)把一个稳定状态和另一个随机稳定状态联系了起来。

2)建立了包含车辆跟驰微观参数λ在内的宏观交通流变量之间的关系。

(4.34)第35页,课件共75页,创作于2023年2月对于停车流而言,车速Ui=0,相应的车头间距S0由车辆长度和车辆间的相对距离构成。对应于S0的密度Kj被称为“阻塞密度”。给定密度Kj,对于任意交通状态,速度为U,密度为K,式4.34可以写为:

(4.35)将此公式与单车道交通(林肯隧道内)实验观测结果对比。得到图4.9所示的速度-密度关系,并且得到了λ的估计值为

0.6S-1。参数λ预示了林肯隧道的渐进稳定交通流的一个上限约束为T≈0.83秒。

第36页,课件共75页,创作于2023年2月注:曲线是根据林肯隧道实验的数据,

用最小二乘法拟和得出的。

图4.9

速度-密度关系图图4.10标准流量与标准密度间的关系第37页,课件共75页,创作于2023年2月但是上面分析和所得结论并不合理,速度-间距关系的方程式表现出了理论的缺陷。由于模型是线性的,并不能很合理的描述交通流流量和密度这两个基本参数的变化特征。图4.10引入了标准化的流量和标准化密度,其中标准密度来源于稳态流理论中公式4.35。从而可以得到:

(4.36)

公式4.36的缺陷在于前提条件要求流量与密度为定性关系,从而引出对线性跟驰方程式的修正。

第38页,课件共75页,创作于2023年2月非线性跟驰模型

线性跟驰模型假定驾驶员的反应强度与车间距离无关,即对给定的相对速度,不管车间距小还是大反应强度都是相同的。实际上,对于给定的相对速度,驾驶员的反应强度应该随车间距离的减小而增大。为了考虑这一因素,我们可以认为反应强度系数λ并非常量,而是与车头间距成反比的,由此得出如下的非线形跟弛模型。

1.车头间距倒数模型跟弛模型的方程:

n=1,2,3,…(4.38)

式中λ1为一个新参数,假定为常量,并把它作为敏感系数。第39页,课件共75页,创作于2023年2月

同前,假定这些参数是来自稳态流的。方程通过积分得到速度-密度的关系式:

(4.39)

及流量-密度关系式:

(4.40)

由此可知u=0时,车头间距等于车辆的有效车长,

即。

利用图4.9和图4.10中的数据,结合交通流参数的稳态关系式,可以得到图4.11和4.12。用最小二乘法对数据进行拟合,得到的稳态关系下λ1和Kj的值分别为27.7km/h和142veh/km。

在道路处于最大交通量时,对应的车流密为。在林肯隧道的实例中,道路通行能力约为1400veh/h。

第40页,课件共75页,创作于2023年2月图4.9

速度-密度关系图

(用最小二乘法拟合)图4.10标准流量与标准密度间的关系图(参数由图4-9拟合)第41页,课件共75页,创作于2023年2月分析公式4.40,在k=0时正切值dq/dk趋近无穷大,这是不合理的。实际上,在低密度下,车头间距很大,车辆之间的跟弛现象已变得很微弱了,正是模型的这一特征,提供了模型的另一种修改形式,即正比于速度间距倒数模型。2.正比于速度间距倒数模型跟弛模型的方程为:

n=1,2,3…(4.41)

λ2为新参数,假定为常量。第42页,课件共75页,创作于2023年2月如前所述,可以给出如下的稳态方程:(4.42)和(4.43)式中为uf自由速度,即密度趋于零时的速度,km为是最大流量时的密度(最佳密度)。在这些前提下,敏感系数λ2可以认为和km-1一致。该模型给出了在密度为零时的极限速度uf

第43页,课件共75页,创作于2023年2月为了更完整地说明交通流在低密度下交通流的速度与车辆密度大小无关,速度-密度关系应该进行适度调整,即写成如下形式:当时(4.44)和当时(4.45)

式中kf是车辆之间将要产生影响时的密度,超过此值,交通流速度随着密度的增加而减小。如果假定影响刚发生时的间距120m,那么kf的值近似为8veh/km。描述速度-密度关系的经验模型:速度-密度关系的格林希尔治线性模型,就可以近似的表示这种关系。第44页,课件共75页,创作于2023年2月3.格林希尔治模型跟弛方程为:

n=1,2,3,…(4.49)第45页,课件共75页,创作于2023年2月4.模型的统一表示总结上述的各种跟驰理论方程,可以得到如下的通式:

(4.51)其中的反应强度系数λ取以下几种形式:■为常数,。■反比与车头间距,即。■正比于车速,反比与车头间距的平方,即。■反比与车头间距的平方,即。这些模型可以看作参数λ一般形式的具体化,即:(4.52)

其中:是通过实验确定的常数,为指数且≥0,≥0。就稳态而言,式4.51和4.52给出了跟驰模型的基本形式。第46页,课件共75页,创作于2023年2月交通流基本参数关系式的一般表示将方程4.51对时间积分,可以得到:(4.53)式中:u——交通流的稳态速度,

S——为稳态车头间距,

a,b——积分常量,可由下式确定(或):当时,(4.54)当时,(4.55)

积分常数的确定依赖于具体的和值(),而且与两个边界条件的满足情况有关,下面分几种情况进行讨论。第47页,课件共75页,创作于2023年2月(1)的情况,两边界条件均满足,a、b值可由下式求得:和(4.56)(2)的情况,仅满足第一个边界条件,可得到b的值为,a的值,可以通过实验数据拟合求得。(3)的情况仅满足第二个边界条件,可得到a、b的值,具有如下关系:(4.57)的情况,两边界条件均不满足,a、b的值,只能通过具体实验的数据拟合求得。利用公式4.53,4.54,4.55,4.56,4.57以及稳态交通流的特性,可以得到速度、密度和流量间关系。在前面已给出了一些例子。图4.13和4.14为取不同和值时所对应流量-密度关系曲线。这些流量曲线的参数通过和进行标准化。

第48页,课件共75页,创作于2023年2月注:根据稳态交通流4.51和4.52公式,m=0,L取不同的值时所对应的流量-密度关系曲线。

图4.13

标准流量与标准密度关系图第49页,课件共75页,创作于2023年2月图4.14

标准流量与标准密度关系图(m=1)第50页,课件共75页,创作于2023年2月从上图中可以看到,这些模型大部分与稳态流的定性描述相一致。如果模型参数选择适当,基本上可以用来拟合图4.9的数据,如图4.13、4.14所示。公式4.51和4.52给出了跟驰模型的一般形式,L和m不一定必须整数值,也可取非整数值,例如从芝加哥的艾森豪威尔高速公路的相关数据中,人们提出了m=0.8和L=2.8模型。实际上在早期对稳态流和跟驰现象的研究中,各种各样的L和m值都得到过。当m=0和L=0,为简单线性跟弛模型。1934年通过对交通流照片资料拟合得到了m=0和=2的模型(Greenshields1935),这个模型也可以引入与跟弛特性有关的知觉因素来改善它(PipesandWojcik1968;FoxandLehman1967;Michaels1963)。第51页,课件共75页,创作于2023年2月当m=0和=1,可通过可变流量类推出稳态流的关系(Greenberg1959),同时引入跟车实验的检验和驾驶员相关速度影响的因素是变化的且这种变化与车距变化成反比的假设,即:m=0和=1模型(Hermanetal.1959)。一个稳态交通流的推断方程(Drew1965)和随后在休斯顿和德克萨斯州的Gulf高速公路的测试得到m=0和=3/2模型。考虑到趋近低密度的自由速度因素,获得m=0和=2的模型(Edie1961)。还有m=0和=3模型,该模型从芝加哥的艾森豪威尔高速公路的相关数据分析中获得(Drakeetal.1967)。通过对与模型相关观察资料的进一步分析,指出反应强度系数可能在大约1800veh/h的单车道上产生不同的值。第52页,课件共75页,创作于2023年2月4.4实验和观测

这部分主要介绍和讨论已经实施的实验,这些实验都试图弄清车辆的跟驰模型是否近似于单车道上的交通流特性。这些实验被分成两种截然不同的类型。第一种类型与车辆跟驰模型和变量的详细测量之间的比较有关。第二种类型与宏观交通流特性的测量有关,主要研究在单车道的交通环境下车队的速度、密度、流量以及它们之间的相互关系。

最后,在微观和宏观两个方面,对以前章节中所提到模型与其所代表的体系进行了验证。第53页,课件共75页,创作于2023年2月4.4.1车辆跟驰实验1)初步测试轨道实验2)隧道行车实验3)公交跟驰实验4)三车跟驰实验

a)Kometani和Sasaki实验5)各种实验b)Forbes等人的实验

c)俄亥俄州实验

d)Constantine和Young的研究初步测试轨道实验

隧道行车实验

公交跟驰实验4.4.1.1车辆跟驰实验的分析三车跟驰实验OhioState仿真研究不对称性研究

第54页,课件共75页,创作于2023年2月第一个实验试图对一个曾使用的线性车辆跟驰模型进行初步评估(1958)。在随后的几年,利用两辆车、三辆车和公交做了很多具有各种目的的实验。大部分实验是在测试轨道设备和车道上实施的。

在这些实验中,同时记录了车头间距、相对速度、跟驰车辆的速度、跟驰车辆的加速度,并用时间信号来保证每个变量和其它变量的同步。车辆跟驰实验的分析,一般是通过把相等的时间间隔内收集到的资料变成数据来进行的,然后利用线性跟驰模型,获得参数λ和T的估计来完成相关分析。数据是不连续,反映时间,同样呈现出不连续值。相关系数是最大值,并在0.85到0.95的范围内显著下降,反应时间与给定的司机有关是其原因之一。第55页,课件共75页,创作于2023年2月初步测试轨道实验

这个实验是由Chandler等人在1958年完成的,目的是为了获得在线性跟驰模型中参数的估计以及这个模型的初步评估。八位男性驾驶员参与了这项在一英里测试轨道设备上实施的研究。

初步实验的结果见表4.1,其中成就是:给出了λ的估计;C=λT为渐近的稳定边界值;平均间距<S>和平均速度<U>。反应强度系数的平均值是0.368s-1,λT的平均值接近于0.5是渐进稳定边界的极限。

利用λ和平均间距<s>的值得到每个对象的值为12.1m/sec,它是常量的一个估计值。每个驾驶员的λ值除以平均间距<s>的值结果并不同,是因为每一个驾驶员是在稍微不同的状态下驾驶的,在图4.15中说明了这点。第56页,课件共75页,创作于2023年2月表4.1车辆跟驰模型的结果图4.15强度系数和平均车头间距倒数的关系图

第57页,课件共75页,创作于2023年2月隧道行车实验

为了进一步建立车辆跟驰模型的有效性并建立评估,参数应该在交通流特性被很好掌握的真实的运营环境中获得,于是一系列的实验在林肯、荷兰和纽约的QueensMid-Town隧道实施。在30个实验中用到了10不同的驾驶员。

30个实验:16个在林肯隧道,10个在荷兰隧道,4个在QueensMid-Town隧道。最终获得了线性模型的参数值,例如:=a0,0和λ。在反应强度系数λ=a0,0和反应时间T的关系图(图4.16)中显示了在隧道中完成实验的结果。实线把这两个参数的区域划分成渐进稳定区域和不稳定区域。对于分别在林肯隧道和荷兰隧道中完成的实验,图4.17和4.18是反应强度系数和平均车头间距倒数的关系图。两条直线都是用最小二乘法拟合出来的,并且都经过原点。斜率都是的估计分别为29.21km/h

和32.68km/h。

第58页,课件共75页,创作于2023年2月很有趣注意到:很多驾驶员进入不稳定区域,并且有些驾驶员得到了相对大的反应强度系数和反应时间。反应相对较慢的驾驶员,补偿性倾向性易于具有快速操作时间和用较强的刹车造成较大的减速。从概率统计上来看,已经确定这样的驾驶员时常易于发生“追尾事件”

图4.16反应强度系数λ与反应时间T的关系图第59页,课件共75页,创作于2023年2月

图4.17荷兰隧道实验中反应强度系数和平均间距倒数的关系图

图4.18林肯隧道实验中反应强度系数和平均间距倒数的关系图第60页,课件共75页,创作于2023年2月公交跟驰实验

一系列的实验被实施,以用来确定由公交车形成的交通流的变化动态特性,是否显著不同于汽车形成的交通流。这些实验用到了一个4公里测试追踪设备,53位乘客的公共汽车。

实验中用了22位驾驶员,完成了线性模型(L=0;m=0),车头间距倒数模型(L=1;m=0)以及正比于速度的间距平方倒数模型(L=2;m=1)的时间依赖相关分析。得到的结果类似于隧道分析:几乎对于所有的驾驶员和三个受检验模型中的任何一个模型,都与车头间距是高度相关的。

分析时考虑到间距倒数的影响,这样在稳定区域内的情况就会提高大约75%,并且这个模型(L=1;m=0)最适宜这些数据,分析的结果见图4.19。第61页,课件共75页,创作于2023年2月图4.19一般反应强度系数和反应时间T的关系图

一些驾驶员不止参加过一次测试,小圆圈代表由10位公交驾驶员参加的实验。实线把图分为渐进稳定和不稳定两个区域。虚线是局部稳定和不稳定区域的边界。第62页,课件共75页,创作于2023年2月图4.20一般反应强度系数和平均间距倒数的关系图关系图中,显示了由最小二乘法拟合出来的直线。斜率是间距倒数对应的一般反应强度系数的一个估计值。小圆点和小圆圈是两种不同实验方式的数据点。第63页,课件共75页,创作于2023年2月图4.21一般反应强度系数和平均速度-平均间距平方倒数的关系图关系图中显示了由最小二乘法拟合出来的直线。斜率是速度-间距平方倒数对应的一般反应强度系数的一个估计值。小圆点和小圆圈是两种不同实验方式的数据点。第64页,课件共75页,创作于2023年2月三车跟驰实验

跟驰行驶的车辆除了受最近车辆的影响之外,还会受到次最近车辆的影响。为了确定次最近车辆的影响程度,研究人员专门做了三车跟驰实验。通过对实验内结果的分析,认为在车辆跟弛行驶过程中,只有最近车辆对跟弛车辆有明显的影响,次最近车辆的影响可以忽略不记。第65页,课件共75页,创作于2023年2月

OhioState仿真研究

根据OhioState模拟器完成的一系列实验,提出了一种相对简单的,用于稳态交通流的车辆跟驰模型。这个模型通过记录相对速度-间距关系的方法很容易被理解,其结果如图4.22所示:图4.22相对速度和间距的关系图第66页,课件共75页,创作于2023年2月

假设驾驶员在点“1”,意识到他正以一个高于前导车辆的速度行驶,并且为了避免负的相对速度变得太大或间距变得太小,他决定减速。过了一段时间后,在“A”点,驾驶员开始减速并使相对速度减小到零。由于驾驶员有个初始值,低于这个值就不能准确估计相对速度,驾驶员继续减速直到他意识到一个正的相对速度。在点“2”,驾驶员为了不与前导车辆之间有太大的间距,决定加速。在“B”点执行这个决定直到达到点“3”,这个过程又开始重复。

第67页,课件共75页,创作于2023年2月不对称性研究

在先前的讨论中,我们都假定驾驶员对于同一刺激采取相同的速率加速和减速,即加速度的绝对值相等。但是,这一假设是不符合实际的,大多数车辆的减速性能要比加速性能强,而且在交通比较拥挤时,跟驰车辆的驾驶员对前车减速的反应强度要比加速的反映强度大一些,这是出于行车安全的考虑。因此,对应于前面车辆的加速或减速刺激,即相对速度是正还是负,跟驰车辆的反应具有不对称性。为了在跟驰模型中反映出这种不对称性,可以把跟驰理论的基础模型改写成如下形式:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论