湖南省怀化市鸭咀岩中学高二数学理月考试题含解析_第1页
湖南省怀化市鸭咀岩中学高二数学理月考试题含解析_第2页
湖南省怀化市鸭咀岩中学高二数学理月考试题含解析_第3页
湖南省怀化市鸭咀岩中学高二数学理月考试题含解析_第4页
湖南省怀化市鸭咀岩中学高二数学理月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省怀化市鸭咀岩中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知命题,,则(

)A.,

B.,C.,≤

D.,≤参考答案:C略2.已知直线,且于,为坐标原点,则点的轨迹方程为(

)A. B. C. D.参考答案:A略3.空间直角坐标系中,点A(-3,4,0)与点B(x,-1,6)的距离为,则x等于()A.2

B.-8

C.2或-8

D.8或2参考答案:C4.已知数列{an}的前n项和Sn=n(n-40),则下列判断正确的是(

) A.a19>0,a21<0 B.a20>0,a21<0 C.a19<0,a21>0 D.a19<0,a20>0参考答案:C略5.已知条件p:|x﹣1|<2,条件q:x2﹣5x﹣6<0,则p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件参考答案:B【考点】29:充要条件.【分析】通过解不等式,先化简条件p,q,再判断出条件p,q中的数构成的集合间的关系,判断出p是q的什么条件.【解答】解:条件p:|x﹣1|<2即﹣1<x<3,条件q:x2﹣5x﹣6<0即﹣1<x<6,∵{x|﹣1<x<6}?{x|﹣1<x<3},∴p是q的充分不必要条件.故选B6.过抛物线的焦点作一条直线交抛物线于,则为(

A.

B.

C.

D.参考答案:B12.中,=

A.

B.

C.D.或参考答案:B略8.若点P是以F1,F2为焦点的椭圆+=1(a>b>0)上一点,且·=0,tan∠PF1F2=则此椭圆的离心率e=(

)A、

B、

C、

D、参考答案:A9.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种

B.48种

C.96种

D.192种参考答案:C10.已知=(λ+1,0,2),=(6,2μ-1,2λ),若∥,则λ与μ的值可以是()(A)2, (B)-2, (C)-3,2 (D)2,2参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设为正实数,现有下列命题:①若,则;②若,则;③若,则;④若,则.其中的真命题有

.(写出所有真命题的编号)参考答案:①④12.已知函数f(x)是R上的奇函数,且对任意实数x满足f(x)+f(x+)=0,若f(1)>1,f(2)=a,则实数a的取值范围是.参考答案:a<﹣1【考点】函数奇偶性的性质.【分析】首先,根据f(x+)=﹣f(x),得到f(x)是周期为3的函数,然后,得到f(1)=﹣a,再结合f(1)>1,得到答案.【解答】解:∵f(x)+f(x+)=0,∴f(x+)=﹣f(x),∴f(x+3)=f(x),∴f(x)是周期为3的函数,∵f(2)=f(3﹣1)=f(﹣1)=﹣f(1)=a∴f(1)=﹣a又∵f(1)>1,∴﹣a>1,∴a<﹣1故答案为a<﹣1.13.函数定义域为

.参考答案:14.已知为第二象限的角,,则

.参考答案:因为为第二象限的角,又,所以,,所

15.过点A(4,1)的圆C与直线相切于点B(2,1),则圆C的方程为

参考答案:16.若x,y满足约束条件则z=x+2y的最小值为

.参考答案:3【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义即可得到结论.【解答】解:作出不等式组对应的平面区域,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点C时,直线y=的截距最小,此时z最小,由,得,即C(3,0)此时z=3+2×0=3.故答案为:3【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.17.设函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,则k的取值范围是

.参考答案:(﹣∞,]

【考点】利用导数研究函数的单调性.【分析】先求导函数f'(x),函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.【解答】解:f'(x)=3kx2+6(k﹣1)x,∵函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k﹣1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=48k+6(k﹣1)×4≤0,即0<k≤,k<0时,f'(4)=48k+6(k﹣1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤,故答案为:(﹣∞,].【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知在(﹣)n的展开式中,第6项为常数项.(1)求n;(2)求含x2项的系数;(3)求展开式中所有的有理项.参考答案:【考点】DA:二项式定理.【分析】(1)由二项式定理,可得(﹣)n的展开式的通项,又由题意,可得当r=5时,x的指数为0,即,解可得n的值,(2)由(1)可得,其通项为Tr+1=(﹣)rC10r,令x的指数为2,可得,解可得r的值,将其代入通项即可得答案;(3)由(1)可得,其通项为Tr+1=(﹣)rC10r,令x的指数为整数,可得当r=2,5,8时,是有理项,代入通项可得答案.【解答】解:(1)根据题意,可得(﹣)n的展开式的通项为=,又由第6项为常数项,则当r=5时,,即=0,解可得n=10,(2)由(1)可得,Tr+1=(﹣)rC10r,令,可得r=2,所以含x2项的系数为,(3)由(1)可得,Tr+1=(﹣)rC10r,若Tr+1为有理项,则有,且0≤r≤10,分析可得当r=2,5,8时,为整数,则展开式中的有理项分别为.19.(本小题满分14分)已知双曲线与椭圆有相同焦点,且经过点.(1)求焦点坐标及椭圆的离心率;(2)求此双曲线的标准方程.参考答案:解:(1)由题意得:

焦点

……7分(2)设双曲线方程为,点在曲线上,代入得或(舍)……14分20.已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.参考答案:解:(1),依题意,

,即解得

┅┅(3分)

∴,∴令,得

若,则

故在上是增函数;

若,则

故在上是减函数;

所以是极大值,是极小值。┅┅┅┅┅┅┅┅

(6分)

(2)曲线方程为,点不在曲线上。

设切点为,则

由知,切线方程为

┅┅┅┅┅┅┅┅┅┅

(9分)

又点在切线上,有

化简得,解得

所以切点为,切线方程为┅┅┅┅┅┅

(12分)

略21.已知集合A={x|x2﹣3x+2≤0},集合B={y|y=x2﹣2x+a},集合C={x|x2﹣ax﹣4≤0},命题p:A∩B≠?,命题q:A?C.(1)若命题p为假命题,求实数a的取值范围.(2)若命题p∧q为真命题,求实数a的取值范围.参考答案:【考点】复合命题的真假;交集及其运算.【专题】计算题;转化思想;转化法;简易逻辑.【分析】(1)先求出集合A,B的等价条件,根据命题p为假命题,即A∩B=?成立,进行求解即可.(2)若p∧q为真命题,则p,q同时为真命题,建立条件关系进行求解即可.【解答】解:(1)A={x|x2﹣3x+2≤0}={x|1≤x≤2},B={y|y=x2﹣2x+a}={y|y=(x﹣1)2+a﹣1≥a﹣1}={y|y≥a﹣1},若命题p为假命题,即A∩B=?,则a﹣1>2,得a>3.(2)若命题p∧q为真命题,则A∩B≠?,且A?C.则,得,得0≤a≤3.【点评】本题主要考查命题的真假应用,根据复合命题真假之间的关系是解决本题的关键.22.在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,.(1)求证:EF∥平面DCP;(2)求平面EFC与平面PDC所成锐二面角的余弦值.参考答案:(1)见解析(2)(1)取中点,连接,易得四边形为平行四边形,从而所以∥平面;(2)平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,求出平面与平面的法向量,代入公式得到所成锐二面角的余弦值.解:方法一:取中点,连接,分别是中点,,为中点,为正方形,,,四边形为平行四边形,平面,平面,平面.方法二:取中点,连接,.是中点,是中点,,又是中点,是中点,,,,又,平面,平面,平面,平面,平面平面.又平面,平面.方法三:取中点,连接,,在正方形中,是中点,是中点又是中点,是中点,,又,,,平面//平面.平面平面方法四:平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,则,则设平面法向量为,则,即,取,,所以,又平面,∥平面.平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,则设平面法向量为,,则,即,取,则设平面法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论