




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则的展开式中常数项为A.8 B.16 C.24 D.602.集合,,则=()A. B.C. D.3.曲线在点处的切线方程是
A. B.C. D.4.极坐标系内,点到直线的距离是(
)A.1 B.2 C.3 D.45.在平面直角坐标系中,曲线(为参数)上的点到直线的距离的最大值为()A. B. C. D.6.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.7.在平面直角坐标系xOy中,圆C1:经过伸缩变换后得到线C2,则曲线C2的方程为()A.4x2+y2=1 B.x2+4y2=1 C.1 D.x218.椭圆的点到直线的距离的最小值为()A. B. C. D.09.若函数在上可导,,则()A.2 B.4 C.-2 D.-410.已知复数满足,则复数在复平面内对应点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函数,,若存在2个零点,则的取值范围是()A. B. C. D.12.设函数在上存在导函数,对于任意的实数,都有,当时,,若,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).14.,若,则的最大值为______.15.若实数,满足条件,则的最大值为__________.16.设,则二项式的展开式中含项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)二项式的二项式系数和为256.(1)求展开式中二项式系数最大的项;(2)求展开式中各项的系数和;(3)展开式中是否有有理项,若有,求系数;若没有,说明理由.18.(12分)已知函数.(1)若,求曲线在点处的切线方程;(2)讨论函数的单调区间.19.(12分)某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(如图(1))和女生身高情况的频率分布直方图(如图(2)).已知图(1)中身高在的男生有16名.(1)试问在抽取的学生中,男、女生各有多少名?(2)根据频率分布直方图,完成下面的列联表,并判断能有多大(百分数)的把握认为身高与性别有关?身高身高总计男生女生总计参考公式:,其中参考数据:0.400.250.100.0100.0010.7081.3232.7066.63510.82820.(12分)在中,角,,的对边分别是,且.(1)求角的大小;(2)已知等差数列的公差不为零,若,且,,成等比数列,求数列的前项和.21.(12分)已知关于x的不等式(其中).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.22.(10分)已知,,分别为三个内角,,的对边,且.(1)求角的大小;(2)若且的面积为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因为所以的通项公式为令,即∴二项式展开式中常数项是,故选C.2、C【解析】
先化简集合A,B,结合并集计算方法,求解,即可.【详解】解得集合,所以,故选C.【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.3、A【解析】
求出函数的导数,求出切线方程的斜率,即可得到切线方程.【详解】曲线,解得y′=ex+xex,所以在点(2,1)处切线的斜率为1.曲线在点(2,1)处的切线方程是:y﹣1=x.即x﹣y+1=2.故选A.【点睛】本题考查曲线的切线方程的求法,考查计算能力4、B【解析】
通过直角坐标和极坐标之间的互化,即可求得距离.【详解】将化为直角坐标方程为,把化为直角坐标点为,即到直线的距离为2,故选B.【点睛】本题主要考查极坐标与直角坐标之间的互化,点到直线的距离公式,难度不大.5、B【解析】
将直线,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】可得:根据点到直线距离公式,可得上的点到直线的距离为【点睛】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.6、C【解析】
由向量的线性运算的法则计算.【详解】-=,,∴+(-).故选C.【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.7、C【解析】
根据条件所给的伸缩变换,反解出和的表达式,然后代入到中,从而得到曲线.【详解】因为圆,经过伸缩变换所以可得,代入圆得到整理得,即故选C项.【点睛】本题考查通过坐标伸缩变换求曲线方程,属于简单题.8、D【解析】
写设椭圆1上的点为M(3cosθ,2sinθ),利用点到直线的距离公式,结合三角函数性质能求出椭圆1上的点到直线x+2y﹣4=1的距离取最小值.【详解】解:设椭圆1上的点为M(3cosθ,2sinθ),则点M到直线x+2y﹣4=1的距离:d|5sin(θ+α)﹣4|,∴当sin(θ+α)时,椭圆1上的点到直线x+2y﹣4=1的距离取最小值dmin=1.故选D.【点睛】本题考查直线与圆的位置关系、椭圆的参数方程以及点到直线的距离、三角函数求最值,属于中档题.9、D【解析】由题设可得,令可得,所以,则,应选答案D.10、A【解析】
把已知变形等式,再由复数代数形式的乘除运算化简得答案.【详解】由,得,∴复数z在复平面内对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,属于基础题.11、B【解析】
由于有两个零点,则图象与有两个交点,作出图象,讨论临界位置.【详解】作出图象与图象如图:当过点时,,将向下平移都能满足有两个交点,将向上平移此时仅有一个交点,不满足,又因为点取不到,所以.【点睛】分段函数的零点个数,可以用数形结合的思想来分析,将函数零点的问题转变为函数图象交点的个数问题会更加方便我们解决问题.12、A【解析】
记,由可得,所以为奇函数,又当时,,结合奇函数性质,可得在上单调递减,处理,得,所以,可得出的范围.【详解】解:因为,所以记,则所以为奇函数,且又因为当时,,即所以当时,,单调递减又因为为奇函数,所以在上单调递减若则即所以所以故选:A.【点睛】本题考查了函数单调性与奇偶性的综合运用,利用导数研究函数的单调性,构造函数法解决抽象函数问题,观察结构特点巧妙构造函数是关键.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】试题分析:将4人分成3组,再将3组分配到3个乡镇,考点:排列组合14、【解析】
均值不等式推广;【详解】【点睛】熟练掌握。15、6【解析】分析:现根据约束条件画出可行域,再利用几何意义求最值,求出最优解,然后求解的最大值即可.详解:现根据实数满足条件,画出可行域,如图所示,由目标函数,则,结合图象可知,当直线过点时,目标函数取得最大值,此时最大值为.点睛:本题主要考查了简单的线性规划求最大值,其中画出约束条件所表示的平面区域,根据直线的几何意义求解是解答的关键,着重考查了推理与运算能力.16、192【解析】因为,所以,由于通项公式,令,则,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)见解析.【解析】分析:(1)依题意知展开式中的二项式系数的和为,由此求得的值,则展开式中的二项式系数最大的项为中间项,即第五项,从而求得结果.(2)令二项式中的,可得二项展开式中各项的系数和;(3)由通项公式及且得当时为有理项;详解:因为二项式的二项式系数和为256,所以,解得.(1)∵,则展开式的通项.∴二项式系数最大的项为;(2)令二项式中的,则二项展开式中各项的系数和为.(3)由通项公式及且得当时为有理项;系数分别为,,.点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.18、(1)(2)当时,函数的增区间是(0,1),减区间是;当时,函数的增区间是和,减区间是;当时,函数增区间是,没有减区间;当时,函数的增区间是(0,1)和,减区间是.【解析】
(1)求导,根据导数的几何意义,写出切线方程的点斜式方程,整理化简即可;(2)求导,根据参数对导数正负的影响对参数进行分类讨论,求得对应的单调性和单调区间.【详解】(1)若,,导函数为.依题意,有,则切线方程为,即.(2),①当时,,由,得,则函数的增区间是(0,1),减区间是;②当时,由,得,再讨论两根的大小关系;⒈当时,,由,得或者,则函数的增区间是和,减区间是;⒉当时,,则函数的增区间是,没有减区间;⒊当时,,由,得或者,则函数的增区间是(0,1)和,减区间是;综上,当时,函数的增区间是(0,1),减区间是;当时,函数的增区间是和,减区间是;当时,函数增区间是,没有减区间;当时,函数的增区间是(0,1)和,减区间是.【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调性,属导数基础题.19、(1)男生40名,女生40名;(2)列联表见解析,【解析】
(1)由图(1)可知,身高在的男生的频率为,设抽取的学生中,男生有名,由算出即可(2)由(1)及频率分布直方图知,身高的男生有(名),身高的女生有(名),然后列表算出即可.【详解】解:(1)由图(1)可知,身高在的男生的频率为,设抽取的学生中,男生有名,则,解得.所以女生有(名).(2)由(1)及频率分布直方图知,身高的男生有(名),身高的女生有(名),所以可得下列列表:身高身高总计男生301040女生43640总计344680由列联表中数据得的观测值为,所以能有的把握认为身高与性别有关.【点睛】本题考查的是统计的相关知识,注意根据观察值与临界值的大小关系得出结论,本题较简单.20、(1);(2).【解析】
1)首先利用正弦定理和三角函数关系式的恒等变换求出C的值.(2)利用(1)的结论,进一步利用等差数列的性质求出数列的首项和公差,进一步求出数列的通项公式,最后利用裂项相消法求出数列的和.【详解】(1)在△ABC中,角A,B,C的对边分别是a,b,c,且acosB+bcosA=2ccosC.利用正弦定理sinAcosB+sinBcosA=2sinCcosC,所以sin(A+B)=sinC=2sinCcosC,由于0<C<π,解得C.(2)设公差为d的等差数列{an}的公差不为零,若a1cosC=1,则a1=2,且a1,a3,a7成等比数列,所以,解得d=1.故an=2+n﹣1=n+1.所以,所以,,.【点睛】本题考查的知识要点:正弦定理的应用,等差数列的性质的应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.21、(Ⅰ)(Ⅱ)【解析】
本试题主要是考查了绝对值不等式的求解,以及分段函数的表示,和图像以及最值的求解综合运用.(1)利用已知条件,先分析的解集就是绝对值不等式的求解,利用三段论法得到.(2)不等式有解,的最小值为,则,从而得到实数a的取值范围.(Ⅰ)当时,,时,,得时,,得时,,此时不存在∴不等式的解集为(Ⅱ)∵设故,即的最小值为所以有解,则解得,即的取值范围是22、(1);(2).【解析】分析:(1)根据正弦定理边化角,根据三角恒等变换求出A;(2)根据面积求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字营销 课件 第1章 绪论
- 千之家加盟合同范本
- 委托销售珠宝合同范本
- 玉产品采购合同范本
- 医院工程就业合同范本
- 房屋按揭银行合同范本
- 防水供销合同范本
- 居委 调解 追债合同范本
- 连锁餐饮合伙合同范本
- 社区安全知识培训教材课件
- 2025年广西职业院校技能大赛中职组(婴幼儿保育赛项)参考试题库及答案
- 足球俱乐部股权转让协议
- 高中主题班会 高一下学期《安全教育-开学第一课》主题班会课件
- 职业健康知识培训
- 电子商务在文化创意产业的应用与案例
- 龋病龋病的临床表现及诊断讲解
- DB50T 1342-2022 预制菜生产加工行为规范
- 设备吊装搬运施工方案范文
- 医务人员职业暴露与防护讲课
- 全过程造价咨询服务的质量承诺及保证措施
- GB/T 44625-2024动态响应同步调相机技术要求
评论
0/150
提交评论