




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是偶函数又在上单调递增的是()A. B.C. D.2.用反证法证明命题:若整系数一元二次方程有有理数根,那么、、中至少有一个是偶数时,下列假设中正确的是()A.假设、、都是偶数 B.假设、、都不是偶数C.假设、、至多有一个偶数 D.假设、、至多有两个偶数3.已知是定义在上的偶函数,且在上是增函数,设,,,则,,的大小关系是()A. B. C. D.4.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A. B. C. D.5.复数的虚部为()A.2 B. C. D.6.袋中有6个不同红球、4个不同白球,从袋中任取3个球,则至少有两个白球的概率是().A. B. C. D.7.如果直线与直线平行,则的值为()A. B. C. D.8.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”9.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有()A.种 B.种 C.种 D.种10.已知椭圆的两个焦点为,且,弦过点,则的周长为()A. B. C. D.11.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-412.已知,则()A. B.186 C.240 D.304二、填空题:本题共4小题,每小题5分,共20分。13.一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为14.已知,直线:和直线:分别与圆:相交于、和、,则四边形的面积为__________.15.在平面直角坐标系中,设点,,点的坐标满足,则在上的投影的取值范围是__________16.若展开式的各二项式系数和为16,则展开式中奇数项的系数和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:函数在上单调递增;命题:关于的方程有解.若为真命题,为假命题,求实数的取值范围.18.(12分)为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.(1)由频率分布直方图计算跑步千米数不小于70千米的人数;(2)已知跑步千米数在的人数是跑步千米数在的,跑步千米数在的人数是跑步千米数在的,现在从跑步千米数在的跑友中抽取3名代表发言,用表示所选的3人中跑步千米数在的人数,求的分布列及数学期望.19.(12分)已知函数f(x)=|2x-1|-|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2-3t在[20.(12分)设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.21.(12分)[选修4-5:不等式选讲]已知函数的最小值为.(1)求的值;(2)若不等式恒成立,求的取值范围.22.(10分)如图所示,在三棱柱中,是边长为4的正方形,,.(l)求证:;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据基本初等函数的单调性和奇偶性,逐一分析四个函数在上的单调性和奇偶性,逐一比照后可得答案.【详解】对于A:是奇函数,对于B:为偶函数,且在上单调递增;对于C:为偶函数,但在上单调递减;对于D:是减函数;所以本题答案为B.【点睛】本题主要考查函数的奇偶性与单调性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(1为偶函数,-1为奇函数).2、B【解析】分析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.解答:解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选B.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.3、B【解析】
由函数为的偶函数,得出该函数在上为减函数,结合性质得出,比较、、的大小关系,结合函数的单调性可得出、、的大小关系.【详解】由函数为的偶函数,且在上是增函数,则该函数在上为减函数,且有,则,,,,且,,由于函数在上为减函数,所以,,因此,,故选B.【点睛】本题考查利用函数的单调性与奇偶性比较大小,考查中间值法比较指数式和对数式的大小关系,再利用函数单调性比较函数值大小时,要结合函数的奇偶性、对称性、周期性等基本性质将自变量置于同一单调区间,结合单调性来比较大小关系,考查分析问题的能力,属于中等题.4、C【解析】
由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【点睛】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.5、B【解析】
根据复数的运算法则,化简复数,即可得到复数的虚部,得到答案.【详解】由题意,复数,所以复数的虚部为,故选B.【点睛】本题主要考查了复数的运算,以及复数的概念的应用,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】
事件“至少有两个白球”包含“两个白球一个红球”和“三个都是白球”,然后利用古典概型的概率的计算公式可求出所求事件的概率.【详解】事件“至少有两个白球”包含“两个白球一个红球”和“三个都是白球”,由古典概型的概率公式知,事件“两个白球一个红球”的概率为,事件“三个都是白球”的概率为,因此,事件“至少有两个球是白球”的概率为,故选D.【点睛】本题考查古典概型的概率公式以及概率的加法公式,解题时要弄清楚事件所包含的基本情况,结合概率的加法公式进行计算,考查分类讨论数学思想,属于中等题.7、B【解析】试题分析:因为直线与直线平行,所以,故选B.考点:直线的一般式方程与直线的平行关系.8、A【解析】
对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.【点睛】本题考查独立性检验,属于基础题.9、C【解析】
根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果.【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有种抽取方法,;②.从7件正品中抽取3件正品,有种抽取方法,则抽取的5件产品中恰好有2件次品的抽法有种;故选:C.【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.10、D【解析】
求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【详解】由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故选D.【点睛】本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.11、D【解析】
根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【点睛】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。12、A【解析】
首先令,这样可以求出的值,然后把因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出的会下,最后可以计算出的值.【详解】令,由已知等式可得:,,设的通项公式为:,则常数项、的系数、的系数分别为:;设的通项公式为:,则常数项、的系数、的系数分别为:,,所以,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、0<r≤1【解析】
设小球圆心(0,y0)抛物线上点(x,y)点到圆心距离平方r2=x2+(y﹣y0)2=2y+(y﹣y0)2=y2+2(1﹣y0)y+y02若r2最小值在(0,0)时取到,则小球触及杯底,此二次函数对称轴在纵轴左边,所以1﹣y0≥0所以0<y0≤1所以0<r≤1故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.14、8【解析】由题意,直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1,交于圆心(a,1),且互相垂直,∴四边形ABCD是正方形,∴四边形ABCD的面积为4×8,故答案为:8.15、【解析】
根据不等式组画出可行域,可知;根据向量投影公式可知所求投影为,利用的范围可求得的范围,代入求得所求的结果.【详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:,在上的投影为:本题正确结果:【点睛】本题考查线性规划中的求解取值范围类问题,涉及到平面向量投影公式的应用;关键是能够根据可行域确定向量夹角的取值范围,从而利用三角函数知识来求解.16、353【解析】分析:由题意可得,由此解得,分别令和,两式相加求得结果.详解:由题意可得,由此解得,即则令得令得,两式相加可得展开式中奇数项的系数和为即答案为353.点睛:本题主要考查二项式定理,二项展开式的通项公式,求展开式中奇数项的系数和,解题时注意赋值法的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解析】试题分析:命题p:函数在上单调递增,利用一次函数的单调性可得或;命题q:关于x的方程有实根,可得,解得;若“p或q”为真,“p且q”为假,可得p与q必然一真一假.分类讨论解出即可.试题解析:由已知得,在上单调递增.若为真命题,则,,或;若为真命题,,,.为真命题,为假命题,、一真一假,当真假时,或,即;当假真时,,即.故.点睛:本题考查了一次函数的单调性、一元二次方程由实数根与判别式的关系、复合命题的判定方法,考查了推理能力,属于基础题.18、(1)60人;(2)分布列见解析,.【解析】
(1)由图可得(2)先求出跑步千米数在的人数,再依题意求出其他区间的人数,可知跑步千米数在的人数为2,跑步千米数在的人数为5,列出分布列求解即可【详解】(1)由频率分布直方图可得跑步千米数不小于70千米的人数为.(2)由频率分布直方图可知,跑步千米数在的人数为,所以跑步千米数在的人数为.因为跑步千米数在的人数为,所以跑步千米数在的人数为,则跑步千米数在的人数为.所以的所有可能取值为0,1,2,则;;.所以的分布列为012故数学期望.【点睛】本题考察的频率分布直方图的识别和超几何分布19、(1)(-∞,-43]∪[6,+∞)【解析】试题分析:(1)将f(x)的表达式以分段函数的形式写出,将原题转化为求不等式组的问题,最后对各个解集求并集得出原不等式的解集;(2)f(x)≥t2-3t在[0,1]上无解相当于f(x)试题解析:(1)由题意得f(x)={x-3,x≥则原不等式转化为{x≥12x-3≥3或∴原不等式的解集为(-∞,-4(2)由题得f(x)由(1)知,f(x)在[0,1]上的最大值为-1,即解得t>3+52或t<3-520、(1)m=1(2)【解析】
试题分析:(1)零点分区间去掉绝对值,得到分段函数的表达式,根据图像即可得到函数最值;(2)将要求的式子两边乘以(b+1)+(a+1),再利用均值不等式求解即可.解析:(1)f(x)=|x+1|-|x|=由f(x)的单调性可知,当x≥1时,f(x)有最大值1.所以m=1.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 调控运行安全管理办法
- 质量节能考核管理办法
- 印刷制品供货服务保障措施
- 贵州户口登记管理办法
- 贵州转移支付管理办法
- 园林绿化工程灾害应急演练与管理措施
- 充电桩合同协议模板模板
- 劳务协议一般签几份合同
- 房屋厨具出租合同协议书
- 承包水库建别墅合同范本
- 2025云南昆明巫家坝建设发展有限责任公司招聘23人笔试备考题库及答案解析
- 2024年山东省节能与双碳促进中心招聘真题
- 热电厂锅炉安全知识培训课件
- 2025年汽车驾驶员技师资格证书考试及考试题库含答案
- 化工防护用品知识培训课件
- 2025-2026学年统编版小学语文四年级上册教学计划及进度表
- KTV突发事件安全应急预案
- 养老机构服务等级评定操作手册
- 中资企业在非洲的安全风险应对策略与启示
- 2025年高考(陕西、山西、青海、宁夏卷)历史真题及答案
- 中职中专入学开学第一课正视职业教育开启未来征程课件
评论
0/150
提交评论