2022-2023学年甘肃省甘谷一中数学高二下期末检测试题含解析_第1页
2022-2023学年甘肃省甘谷一中数学高二下期末检测试题含解析_第2页
2022-2023学年甘肃省甘谷一中数学高二下期末检测试题含解析_第3页
2022-2023学年甘肃省甘谷一中数学高二下期末检测试题含解析_第4页
2022-2023学年甘肃省甘谷一中数学高二下期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是计算的值的程序框图,则图中①②处应填写的语句分别是()A., B.,C., D.,2.已知复数在复平面内的对应点关于实轴对称,(为虚数单位),则()A. B. C. D.3.函数为偶函数,且在单调递增,则的解集为A. B.或C. D.或4.已知椭圆(为参数)与轴正半轴,轴正半轴的交点分别为,动点是椭圆上任一点,则面积的最大值为()A. B. C. D.5.定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是()A.f()+1<f()<f()﹣1 B.f()+1<f()<f()﹣1C.f()﹣1<f()<f()+1 D.f()﹣1<f()<f()+16.函数在点处的切线方程为()A. B. C. D.7.设集合,分别从集合A和B中随机抽取数x和y,确定平面上的一个点,记“点满足条件”为事件C,则()A. B. C. D.8.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.9.若等比数列的各项均为正数,,,则()A. B. C.12 D.2410.若复数(为虚数单位)是纯虚数,则实数()A. B. C.0 D.111.如图是由正方体与三棱锥组合而成的几何体的三视图,则该几何体的表面积为()A.28+43 B.36+43 C.28+12.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为()A.90 B.60 C.120 D.110二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为__________.14.已知函数f(x)=e2x+2f(0)ex﹣f′(0)x,f′(x)是f(x)的导函数,若f(x)≥x﹣ex+a恒成立,则实数a的取值范围为__.15.已知实数x,y满足不等式组,则的最大值是__________.16.从位女生,位男生中选了人参加数学、物理、化学竞赛,每个学科各人,且至多有位女生参赛,则不同的参赛方案共有__________种.(用数字填写答案).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.18.(12分)设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2.(1)当S1=S2时,求点P的坐标;(2)当S1+S2有最小值时,求点P的坐标和最小值.19.(12分)甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对三种书籍有购买意向,已知甲同学购买书籍的概率分别为,乙同学购买书籍的概率分别为,假设甲、乙是否购买三种书籍相互独立.(1)求甲同学购买3种书籍的概率;(2)设甲、乙同学购买2种书籍的人数为,求的概率分布列和数学期望.20.(12分)国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.(参考数据:,)21.(12分)知函数.(1)当时,求的解集;(2)已知,,若对于,都有成立,求的取值范围.22.(10分)已知曲线的参数方程为(为参数).以轴正半轴为极轴,以坐标原点为极点建立极坐标系,点的极坐标为,过点的直线与曲线相交于,两点.(1)若直线的斜率,求直线的极坐标方程和曲线的普通方程;(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】该程序是求数列的前16项和,①处变量每次增加2,②处是循环控制条件,循环体共执行了16次,故时,退出循环,选A.2、A【解析】

由题意,求得,则,再根据复数的除法运算,即可求解.【详解】由题意,复数在复平面内的对应点关于实轴对称,,则,则根据复数的运算,得.故选A.【点睛】本题主要考查了复数的表示,以及复数的除法运算,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解析】

根据函数的奇偶性得到,在单调递增,得,再由二次函数的性质得到,【详解】函数为偶函数,则,故,因为在单调递增,所以.根据二次函数的性质可知,不等式,或者,的解集为,故选D.【点睛】此题考查了函数的对称性和单调性的应用,对于抽象函数,且要求解不等式的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为自变量的大小比较,直接比较括号内的自变量的大小即可.4、B【解析】分析:根据椭圆的方程算出A(4,1)、B(1,3),从而得到|AB|=5且直线AB:3x+4y﹣12=1.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=|sin﹣1|,结合三角函数的图象与性质算出dmax=(),由此结合三角形面积公式,即可得到△PAB面积的最大值.详解:由题得椭圆C方程为:,∴椭圆与x正半轴交于点A(4,1),与y正半轴的交于点B(1,3),∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[1,2π])∴点P到直线AB:3x+4y﹣12=1的距离为d==|sin﹣1|,由此可得:当θ=时,dmax=()∴△PAB面积的最大值为S=|AB|×dmax=6().点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)对于|sin﹣1|,不是sin=1时,整个函数取最大值,而应该是sin=-1,要看后面的“-1”.5、D【解析】

构造函数g(x)=f(x),利用导数可知函数在(0,+∞)上是减函数,则答案可求.【详解】由x2f′(x)<1,得f′(x),即得f′(x)0,令g(x)=f(x),则g′(x)=f′(x)0,∴g(x)=f(x)在(0,+∞)上为单调减函数,∴f()+2<f()+3<f()+4,则f()<f()+1,即f()﹣1<f();f()<f()+1.综上,f()﹣1<f()<f()+1.故选:D.【点睛】本题考查利用导数研究函数的单调性,正确构造函数是解题的关键,是中档题.6、A【解析】

先求出f(x),再利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率即可.【详解】∵f(x)=sinx+cosx,∴f(x)=cosx﹣sinx,∴f(1)=1,所以函数f(x)在点(1,f(1))处的切线斜率为1;又f(1)=1,∴函数f(x)=sinx+cosx在点(1,f(1))处的切线方程为:y﹣1=x﹣1.即x﹣y+1=1.故选A.【点睛】本题考查利用导数求曲线上在某点切线方程的斜率,考查直线的斜率、导数的几何意义等基础知识,属于基础题.7、A【解析】

求出从集合A和B中随机各取一个数x,y的基本事件总数,和满足点P(x,y)满足条件x2+y2≤16的基本事件个数,代入古典概型概率计算公式,可得答案.【详解】∵集合A=B={1,2,3,4,5,6},分别从集合A和B中随机各取一个数x,y,确定平面上的一个点P(x,y),共有6×6=36种不同情况,其中P(x,y)满足条件x2+y2≤16的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,∴C的概率P(C),故选A.【点睛】本题考查的知识点是古典概型概率计算公式,考查了列举法计算基本事件的个数,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.8、B【解析】

由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).9、D【解析】

由,利用等比中项的性质,求出,利用等比数列的通项公式即可求出.【详解】解:数列是等比数列,各项均为正数,,所以,所以.所以,故选D.【点睛】本题考查了等比数列的通项公式,等比中项的性质,正确运算是解题的关键,属于基础题.10、A【解析】因为是纯虚数,11、C【解析】

由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,由此可求得几何体的表面积.【详解】由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,故该几何体的表面积为S=2×2×5+【点睛】本题主要考查三视图的还原,几何体的表面积的计算,难度一般,意在考查学生的转化能力,空间想象能力,计算能力.12、D【解析】

用所有的选法共有减去没有任何一名女生入选的组队方案数,即得结果【详解】所有的选法共有种其中没有任何一名女生入选的组队方案数为:故至少有一名女生入选的组队方案数为故选【点睛】本题主要考的是排列,组合及简单计数问题,考查组合的运用,处理“至少有一名”类问题,宜选用间接法,是一道基础题。二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:通过椭圆与双曲线的定义,用和表示出的长度,根据余弦定理建立的关系式;根据离心率的定义表示出两个离心率的平方和,利用基本不等式即可求得最小值。详解:,所以解得在△中,根据余弦定理可得代入得化简得而所以的最小值为点睛:本题考查了圆锥曲线的综合应用。结合余弦定理、基本不等式等对椭圆、双曲线的性质进行逐步分析,主要是对圆锥曲线的“交点”问题重点分析和攻破,属于难题。14、(﹣∞,0].【解析】

令,得到,再对求导,然后得到,令,得到,再得到,然后对,利用参变分离,得到,再利用导数求出的最小值,从而得到的取值范围.【详解】因为所以令得,即,而令得,即所以则整理得设,则令,则所以当时,,单调递增,当时,,单调递减,所以所以的范围为,故答案为.【点睛】本题考查了利用导数研究函数的单调性和最值,考查了转化思想和函数思想,属中档题.15、12.【解析】分析:画出不等式组表示的可行域,平移,结合所画可行域,可求得的最大值.详解:作出不等式组表示的平面区域如阴影部分,分析知,当时,平移直线,由图可得直线经过点时,取得最大值,且,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、【解析】分析:分只有一个女生和没有女生两种情况讨论求不同的参赛方案总数.详解:当只有一个女生时,先选一个女生有种选法,再从4个男生里面选2个男生有种方法,再把选出的3个人进行排列有种方法,所以有种方法.当没有女生时,直接从4个男生里选3个排列有种方法.所以共有种方法,故答案为:96.点睛:(1)本题主要考查排列组合的综合,意在考查学生对这些知识的掌握水平和分析推理能力分类讨论思想方法.(2)排列组合常用方法:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)直线的普通方程为.曲线的直角坐标方程为;(Ⅱ).【解析】分析:(Ⅰ)消去参数m可得直线的普通方程为.极坐标方程化为直角坐标方程可得曲线的直角坐标方程为.(Ⅱ)由题意结合直线与圆的位置关系整理计算可得.详解:(Ⅰ)由得,消去,得,所以直线的普通方程为.由,得,代入,得,所以曲线的直角坐标方程为.(Ⅱ)曲线:的圆心为,半径为,圆心到直线的距离为,若曲线上的点到直线的最大距离为6,则,即,解得.点睛:求解与极坐标有关的问题的主要方法:(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.18、(1),(2),【解析】试题分析:(1)可考虑用定积分求两曲线围成的封闭图形面积,直线OP的方程为y=tx,则S1为直线OP与曲线y=x2当x∈(0,t)时所围面积,所以,S1=∫0t(tx﹣x2)dx,S2为直线OP与曲线y=x2当x∈(t,2)时所围面积,所以,S2=∫t2(x2﹣tx)dx,再根据S1=S2就可求出t值.(Ⅱ)由(2)可求当S1+S2,化简后,为t的三次函数,再利用导数求最小值,以及相应的x值,就可求出P点坐标为多少时,S1+S2有最小值.试题解析:(1)设点P的横坐标为t(0<t<2),则P点的坐标为(t,t2),直线OP的方程为y=txS1=∫0t(tx﹣x2)dx=,S2=∫t2(x2﹣tx)dx=,因为S1=S2,,所以t=,点P的坐标为(2)S=S1+S2==S′=t2﹣2,令S'=0得t2﹣2=0,t=因为0<t<时,S'<0;<t<2时,S'>0所以,当t=时,Smin=,P点的坐标为.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.19、(1);(2)分布列见解析,.【解析】

(1)这是相互独立事件,所以甲购买书籍的概率直接相乘即可.(2)基本事件为甲购买两本书和乙购买两本书的概率,所以先求出基本事件的概率,然后再求分布列.【详解】(1)记“甲同学购买3种书籍”为事件A,则.答:甲同学购买3种书籍的概率为.(2)设甲、乙同学购买2种书籍的概率分别为,.则,,所以,所以.,,.所以X的概率分布为X012P.答:所求数学期望为.【点睛】本题考查相互独立事件的概率,考查二项分布独立重复事件的概率的求法,解题的关键是找出基本事件的概率,属于中档题.20、(1)乙城市,理由见解析;(2)【解析】

(1)求出甲已两个城市的打分平均数及方差,根据大小判断即可;(2)设事件“甲、乙两个城市的打分中,各抽取2个,有大于80分的分数”,事件“甲、乙两个城市的打分中,各抽取2个,乙城市的分数都小于80分”,根据条件概率公式求解即可.【详解】(1)甲城市的打分平均数为:,乙城

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论