




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是服从二项分布的随机变量,又,,则与的值分别为(
)A., B., C., D.,2.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于A.0.2B.0.8C.0.196D.0.8043.已知是等比数列的前n项和,且是与的等差中项,则()A.成等差数列 B.成等差数列C.成等差数列 D.成等差数列4.若,,0,1,2,3,…,6,则的值为()A. B. C.1 D.25.若能被整除,则的值可能为()A. B. C.x="5,n=4" D.6.在“一带一路”的知识测试后甲、乙、丙三人对成绩进行预测.甲:我的成绩最高.乙:我的成绩比丙的成绩高丙:我的成绩不会最差成绩公布后,三人的成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序可能为()A.甲、丙、乙 B.乙、丙、甲C.甲、乙、丙 D.丙、甲、乙7.设函数(e为自然底数),则使成立的一个充分不必要条件是()A. B. C. D.8.随机变量,且,则()A.64 B.128 C.256 D.329.已知随机变量,,若,,则()A.0.1 B.0.2 C.0.32 D.0.3610.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:气温(℃)181310-1用电量(度)24343864由表中数据得到线性回归方程y=-2x+a,当气温为A.68度 B.52度 C.12度 D.28度11.如图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.已知图中直角三角形两个直角边的长分别为2和1.若从图中任选一点,则该点恰在阴影区域的概率为()A. B. C. D.12.曲线在处的切线的倾斜角是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,正四棱柱的底面边长为4,记,,若,则此棱柱的体积为______.14.已知甲盒中仅有一个球且为红球,乙盒中有3个红球和4个蓝球,从乙盒中随机抽取个球放在甲盒中,放入个球后,甲盒中含有红球的个数为,则的值为________15.如图,把数列中的所有项按照从小到大,从左到右的顺序写成如图所示的数表,且第行有个数.若第行从左边起的第个数记为,则2019这个数可记为______.16.已知抛物线,过的焦点的直线与交于,两点。弦长为,则线段的中垂线与轴交点的横坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.18.(12分)某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.认为作业量大认为作业量不大合计男生18女生17合计50(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?(Ⅲ)若视频率为概率,在全校随机抽取4人,其中“认为作业量大”的人数记为,求的分布列及数学期望.附表:0.1000.0500.0250.0100.0012.7063.8415.0246.63510.828附:19.(12分)(1)化简:;(2)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于的偶数可以表示为两个素数的和”,如,在不超过的素数中,随机选取两个不同的数,其和等于的概率是多少?20.(12分)已知函数(为常数).(1)讨论函数的单调性;(2)当时,设的两个极值点,()恰为的零点,求的最小值.21.(12分)已知曲线的极坐标方程是,以极点为原点,以极轴为轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线的参数方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设曲线经过伸缩变换得到曲线,曲线上任一点为,求的取值范围.22.(10分)对于函数y=fx,若关系式t=fx+t中变量t是变量x的函数,则称函数y=fx为可变换函数.例如:对于函数fx=2x,若t=2x+t,则t=-2x,所以变量t(1)求证:反比例函数gx=(2)试判断函数y=-x3(3)若函数hx=logbx为可变换函数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:根据二项分布的期望和方差的计算公式,列出方程,即可求解答案.详解:由题意随机变量,又由,且,解得,故选B.点睛:本题主要考查了二项分布的期望与方差的计算公式的应用,其中熟记二项分布的数学期望和方差的计算公式是解答本题的关键,着重考查了推理与运算能力.2、C【解析】试题分析:由题意可知发病的牛的头数为ξ~B(10,0.02),所以D(ξ)=10×0.02×(1-0.02)=0.196;故选C.考点:二项分布的期望与方差.3、B【解析】
由于是与的等差中项,得到,分,两种情况讨论,用等比数列的前n项和公式代入,得到,即,故得解.【详解】由于是与的等差中项,故由于等比数列,若:,矛盾;若:,即成等差数列故选:B【点睛】本题考查了等差、等比数列综合,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.4、C【解析】
根据题意,采用赋值法,令得,再将原式化为根据二项式定理的相关运算,求得,从而求解出正确答案.【详解】在中,令得,由,可得,故.故答案选C.【点睛】本题考查二项式定理的知识及其相关运算,考查考生的灵活转化能力、分析问题和解决问题的能力.5、C【解析】
所以当时,能被整除,选C.6、D【解析】
假设一个人预测正确,然后去推导其他两个人的真假,看是否符合题意.【详解】若甲正确,则乙丙错,乙比丙成绩低,丙成绩最差,矛盾;若乙正确,则甲丙错,乙比丙高,甲不是最高,丙最差,则成绩由高到低可为乙、甲、丙;若丙正确,则甲乙错,甲不是最高,乙比丙低,丙不是最差,排序可为丙、甲、乙.A、B、C、D中只有D可能.故选D.【点睛】本题考查合情推理,抓住只有一个人预测正确是解题的关键,属于基础题.7、A【解析】
由可得:,结合充分、必要条件的概念得解.【详解】解得:又“”可以推出“”但“”不能推出“”所以“”是“”充分不必要条件.故选:A.【点睛】本题主要考查了等价转化思想及充分、必要条件的概念,属于基础题。8、A【解析】
根据二项分布期望的计算公式列方程,由此求得的值,进而求得方差,然后利用方差的公式,求得的值.【详解】随机变量服从二项分布,且,所以,则,因此.故选A.【点睛】本小题主要考查二项分布期望和方差计算公式,属于基础题.9、A【解析】
由求出,进而,由此求出.【详解】解:因为,,,所以,解得或(舍),由,所以.故选:A.【点睛】本题考查概率的求法,考查二项分布、正态分布等基础知识,考查推理论证能力、运算求解能力,是基础题.10、A【解析】由表格可知x=10,y=40,根据回归直线方程必过(x,y)得a11、C【解析】
直接根据几何概型计算得到答案.【详解】,,故.故选:.【点睛】本题考查了几何概型,意在考查学生的计算能力.12、B【解析】分析:先求导数,再根据导数几何意义得斜率,最后得倾斜角.详解:因为,所以所以曲线在处的切线的斜率为因此倾斜角是,选B.点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
建立空间直角坐标系,设出直四棱柱的高h,求出的坐标,由数量积为0求得h,则棱柱的体积可求.【详解】建立如图所示空间直角坐标系,设,又,则,,,,,,,,即.此棱柱的体积为.故答案为.【点睛】本题考查棱柱体积的求法,考查利用空间向量解决线线垂直问题,是中档题.14、【解析】
当抽取个球时,的取值为,根据古典概型概率计算公式,计算出概率,并求得期望值.当抽取个球时,的取值为,根据古典概型概率计算公式,计算出概率,并求得期望值.【详解】解:甲盒中含有红球的个数的取值为1,2,则,.则;甲盒中含有红球的个数的值为1,2,3,则,,.则.∴.故答案为:.【点睛】本小题主要考查随机变量期望值的计算方法,考查古典概型概率计算公式,考查组合数的计算,属于中档题.15、【解析】
前行用掉个自然数,由可判断2019所在行,即可确定其位置.【详解】因为前行用掉个自然数,而,
即2019在11行中,又第11行的第1个数为,
则2019为第11行的第个数,即第996个数,
即,,
故答案为:.【点睛】本题主要考查了归纳推理,等比数列求和,属于中档题.16、【解析】
首先确定线段AB所在的方程,然后求解其垂直平分线方程,最后确定线段的中垂线与轴交点的横坐标即可.【详解】设直线的倾斜角为,由抛物线的焦点弦公式有:,则,由抛物线的对称性,不妨取直线AB的斜率,则直线的方程为:,与抛物线方程联立可得:,由韦达定理可得:,设的中点,则,,其垂直平分线方程为:,令可得,即线段的中垂线与轴交点的横坐标为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18、(Ⅰ)见解析(Ⅱ)有的把握认为“认为作业量大”与“性别”有关(Ⅲ)见解析【解析】分析:(1)先设认为作业量大的共有个人,再求出x的值,完成列联表.(2)先求出,再判断是否有的把握认为“认为作业量大”与“性别”有关.(3)利用二项分布求的分布列及数学期望.详解:(Ⅰ)设认为作业量大的共有个人,则,解得或(舍去);认为作业量大认为作业量不大合计男生18826女生71724合计252550(Ⅱ)根据列联表中的数据,得.因此有的把握认为“认为作业量大”与“性别”有关.(Ⅲ)的可能取值为0,1,2,3,4.由(Ⅰ)可知,在全校随机抽取1人,“认为作业量大”的概率为.由题意可知.所以.所以的分布列为01234(或).点睛:(1)本题主要考查二乘二列联表,考查独立性检验和随机变量的分布列和期望,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).19、(1)详见解析;(2)【解析】
(1)根据组合数的运算公式求解;(2)首先列举所有不超过30的素数,然后按照古典概型写出概率.【详解】(1)(2)不超过30的素数有2,3,5,7,11,13,17,19,23,29共10个,任取2个不同的数有种方法,其中和为30的有共三组,则【点睛】本题考查组合数的证明和古典概型的概率公式意在考查推理与证明和计算能力,属于基础题型20、(Ⅰ)当时,的单调递增区间为,单调递减区间为,当时,的单调递增区间为;(Ⅱ).【解析】试题分析:(1)先求函数导数,讨论导函数符号变化规律:当时,导函数不变号,故的单调递增区间为.当时,导函数符号由正变负,即单调递增区间为,单调递减区间减区间为,(2)先求导数得为方程的两根,再求导数得,因此,而由为的零点,得,两式相减得,即得,因此,从而,其中根据韦达定理确定自变量范围:因为又,所以试题解析:(1),当时,由解得,即当时,单调递增,由解得,即当时,单调递减,当时,,即在上单调递增,当时,故,即在上单调递增,所以当时,的单调递增区间为,单调递减区间减区间为,当时,的单调递增区间为.(2),则,所以的两根即为方程的两根.因为,所以,又因为为的零点,所以,两式相减得,得,而,所以令,由得因为,两边同时除以,得,因为,故,解得或,所以,设,所以,则在上是减函数,所以,即的最小值为.考点:利用导数求函数单调区间,利用导数求函数最值【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f′(x)>0,则y=f(x)在该区间为增函数;如果f′(x)<0,则y=f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.21、(1)直线的普通方程为,曲线的直角坐标方程为.(2)的取值范围是.【解析】试题分析:(Ⅰ)利用,将转化成直角坐标方程,利用消参法法去直线参数方程中的参数,得到直线的普通方程;(Ⅱ)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可.试题解析:(Ⅰ)直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游产业发展趋势及策略分析
- 大五人格对在线学习效果的影响研究
- 抖音商户部门负责人选拔任用制度
- 抖音商户市场专员关键词投放审核制度
- 全民健身设施补短板工程实施方案在全民健身场地设施建设中的应用与对策研究
- 公交优先战略在城市交通拥堵治理中的2025年实施效果评估报告
- Carpetimycin-D-生命科学试剂-MCE
- 西安理工大学高科学院《生态水工学概论》2023-2024学年第一学期期末试卷
- 山东省枣庄市峄城区2025届九上化学期末达标检测试题含解析
- 衡水学院《森林水文学》2023-2024学年第一学期期末试卷
- 劳动教育与数学作业深度融合 全面培养学生的劳动素养
- 中国质谱仪行业发展趋势及发展前景研究报告2025-2028版
- 2025至2030中国直联式真空泵行业市场现状分析及竞争格局与投资发展报告
- 2025至2030中国无源光分路器行业发展趋势分析与未来投资战略咨询研究报告
- 痛风治疗与护理课件
- T/CCBD 19-2022品牌餐厅评价规范
- 河南省南阳市内乡县2025届数学七下期末调研试题含解析
- 校际结对帮扶协议书
- 第四版(2025)国际压力性损伤溃疡预防和治疗临床指南解读
- 企业电工面试题及答案
- 仓库与生产线的有效对接计划
评论
0/150
提交评论