版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是()A. B.C. D.2.设直线的一个方向向量,平面的一个法向量,则直线与平面的位置关系是().A.垂直 B.平行C.直线在平面内 D.直线在平面内或平行3.执行如图程序框图,若输入的,分别为12,20,则输出的()A.2 B.3 C.4 D.54.已知,设的展开式的各项系数之和为,二项式系数之和为,若,则展开式中的系数为()A.-250 B.250 C.-500 D.5005.已知的二项展开式中常数项为1120,则实数的值是()A. B.1 C.或1 D.不确定6.一个空间几何体的三规图如图所示,则该几何体的体积为()A. B. C. D.7.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确8.某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有()A.18种 B.12种 C.432种 D.288种9.已知不等式x-b≥alnx(a≠0)对任意x∈(0,+∞)恒成立,则A.1-ln2 B.1-ln310.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种 B.48种 C.96种 D.192种12.若满足约束条件,则的最小值是()A.0 B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.计算定积分-1114.在的展开式中,的系数为________15.已知cos,则二项式的展开式中的系数为__________.16.在平面上,,,.若,则的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,三个内角,,所对的边分别为,,,满足.(1)求;(2)若,的面积为,求,的值.18.(12分)在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;(1)求曲线的极坐标方程与直线的直角坐标方程;(2)在曲线上取两点,与原点构成,且满足,求面积的最大值.19.(12分)[选修4-5:不等式选讲]已知函数.(1)解不等式:;(2)对任意,恒成立,求实数的取值范围.20.(12分)已知函数.(1)讨论函数的单调性;(2)设函数,当时,对任意的恒成立,求满足条件的最小的整数值.21.(12分)已知实数使得函数在定义域内为增函数;实数使得函数在上存在两个零点,且分别求出条件中的实数的取值范围;甲同学认为“是的充分条件”,乙同学认为“是的必要条件”,请判断两位同学的说法是否正确,并说明理由.22.(10分)“初中数学靠练,高中数学靠悟”.总结反思自己已经成为数学学习中不可或缺的一部分,为了了解总结反思对学生数学成绩的影响,某校随机抽取200名学生,抽到不善于总结反思的学生概率是0.6.(1)完成列联表(应适当写出计算过程);(2)试运用独立性检验的思想方法分析是否有的把握认为学生的学习成绩与善于总结反思有关.统计数据如下表所示:不善于总结反思善于总结反思合计学习成绩优秀40学习成绩一般20合计200参考公式:其中
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题求已知双曲线的焦点坐标,进而求出值即可得答案。【详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是故选D【点睛】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。2、D【解析】∵直线的一个方向向量,平面的一个法向量∴∴直线在平面内或平行故选D.3、C【解析】
由循环结构的特点,先判断,再执行,分别计算当前的值,即可得出结论.【详解】解:由,则.
由,则.
由,则.
由,则输出.
故选:C.【点睛】本题考查了算法和程序框图的应用问题,也考查了古代数学文化的应用问题,是基础题.4、A【解析】
分别计算各项系数之和为,二项式系数之和为,代入等式得到,再计算的系数.【详解】的展开式取得到二项式系数之和为取值为-250故答案选A【点睛】本题考查了二项式定理,计算出的值是解题的关键.5、C【解析】
列出二项展开式的通项公式,可知当时为常数项,代入通项公式构造方程求得结果.【详解】展开式的通项为:令,解得:,解得:本题正确选项:【点睛】本题考查根据二项展开式指定项的系数求解参数值的问题,属于基础题.6、B【解析】
根据三视图得知该几何体是四棱锥,计算出四棱锥的底面积和高,再利用锥体体积公式可得出答案.【详解】由三视图可知,该几何体是四棱锥,底面是矩形,其面积为,高为,因此,该几何体的体积为,故选B.【点睛】本题考查三视图以及简单几何体体积的计算,要根据三视图确定几何体的形状,再根据体积公式进行计算,考查空间想象能力与计算能力,属于中等题.7、A【解析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.8、D【解析】
根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,②将选出的4人全排列,安排4人的顺序,由分步计数原理计算可得答案.【详解】根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,若甲、乙、丙三人都参加,在a、b、c三人中任选1人,有3种情况,若甲、乙、丙三人有2人参加,在a、b、c三人中任选1人,有=9种情况,则有3+9=12种选法;②将选出的4人全排列,安排4人的顺序,有A44=24种顺序,则不同的发言顺序有12×24=288种;故答案为:D.【点睛】(1)本题主要考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常见解法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.9、C【解析】
构造函数gx=x-alnx-b,利用导数求出函数y=gx的最小值,由gxmin≥0得出【详解】构造函数gx=x-alnx-b,由题意知①当a<0时,∀x>0,g'x>0,此时,函数y=g当x→0时,gx→-∞,此时,②当a>0时,令g'x=当0<x<a时,g'x<0;当x>a所以,函数y=gx在x=a处取得极小值,亦即最小值,即g∴b≤a-alna,构造函数ha=1-lna-2令h'a=0,得a=2。当0<a<2时,h'a此时,函数y=ha在a=2处取得极大值,亦即最大值,即h因此,b-2a的最大值为-ln2【点睛】本题考查函数恒成立问题,考查了函数的单调性,训练了导数在求最值中的应用,渗透了分类讨论的思想,构造函数利用导数研究函数的最值是解决函数不等式恒成立的常用方法,考查分析问题的能力,属于难题。10、B【解析】
根据充分性和必要性的判断方法来判断即可.【详解】当时,若,不能推出,不满足充分性;当,则,有,满足必要性;所以“”是“”的必要不充分条件.故选:B.【点睛】本题考查充分性和必要性的判断,是基础题.11、C【解析】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,∴不同的选修方案共有6×4×4=96种,故选C.考点:分步计数原理点评:本题需注意方案不分次序,即a,b和b,a是同一种方案,用列举法找到相应的组合即可.12、B【解析】可行域为一个三角形及其内部,其中,所以直线过点时取最小值,选B.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】试题分析:-1考点:定积分计算14、【解析】
由题意,二项式展开式的通项为,令,即可求解.【详解】由题意,二项式的展开式的通项为,令,即,可得,即展开式中的系数为40.【点睛】本题主要考查了二项式展开式中项的系数问题,其中解答中熟记二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.15、【解析】分析:由微积分基本定理求出,再写出二项展开式的通项,令的指数为1,求得,从而求得的系数.详解:,二项式展开式通项为,令,则.∴的系数为.故答案为-1.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.16、【解析】
本题可以通过建立平面直角坐标系,将给的向量条件坐标化,然后把所求的也用坐标表示出来,最后根据式子采用适当的方法得出结果.【详解】设,则有因为所以①②③因为所以①+②得即由①②可知带入③中可知综上可得所以,的取值范围是.【点睛】在做向量类的题目的时候,可以通过构造直角坐标系,用点的坐标来表示向量以及向量之间的关系,借此来得出答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】分析:(1)直接利用三角函数关系式的恒等变换和正弦定理求出A的值;(2)利用余弦定理和三角形面积公式的应用求出结果.详解:(1)由题意可得:,,,,(2),,,.点睛:本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用,三角形面积公式的应用.18、(1),;(2)【解析】
(1)求出直线l的直角坐标方程为y2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,求出r=2,曲线C的普通方程为(x)2+(y﹣1)2=4,由此能求出曲线C的极坐标方程.(2)设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),由2sin(2),由此能求出△MON面积的最大值.【详解】(1)∵直线l的极坐标方程为,∴由题意可知直线l的直角坐标方程为y2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,可得r2,∵曲线C的参数方程为(r>0,φ为参数),∴曲线C的普通方程为(x)2+(y﹣1)2=4,所以曲线C的极坐标方程为ρ2﹣2ρcosθ﹣2ρsinθ=0,即.(2)由(Ⅰ)不妨设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),4sin()sin()=2sinθcosθ+2=sin2θ2sin(2),当时,,故所以△MON面积的最大值为2.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19、(1);(2).【解析】分析:(1)解法一:写出分段函数的解析式,讨论的范围,求出分段函数不同自变量范围的不等式的解,再求这些解的并集即可.解法二:写出分段函数的解析式,绘制函数图象,计算函数与的交点坐标,根据函数图象确定不等式的解.解法三:根据绝对值在数轴上的几何意义,确定不等式的解.(2)将恒成立问题转化成问题,确定后,解关于的一元二次不等式,即可求出实数的取值范围.解法一:根据三角不等式,确定函数最小值解法二:根据函数图象,确定函数最小值.详解:(1)解法一:当时,,解得:;当时,,解得:;当时,,解得:,所以不等式的解集为;(1)解法二:令,两个函数的图象如图所示:由图像可知,两函数图象的交点为和,所以不等式即的解集为(注:如果作出函数的图象,写出的解集,可参照解法2的标准给分)解法三:如图,设数轴上与对应的点分别是,那么两点的距离是4,因此区间上的数都是原不等式的解.先在数轴上找出与点的距离之和为的点,将点向左移动2个单位到点,这时有,同理,将点向右移动2个单位到点,这时也有,从数轴上可以看到,点与之间的任何点到点的距离之和都小于8,点的左边或点的右边的任何点到点的距离之和都大于8,所以,原不等式的解集是(2)解法一:,当时“”成立,又任意,恒成立,∴,即,解得:,∴的取值范围为.解法二:作函数的图象如图:由图象可知,函数的最小值为4,(注:如果第(1)问用解法2,可直接由(1)得最小值为4,不必重复说明)又任意,恒成立,∴,即,解得:,∴的取值范围为.点睛:本题考查了绝对值不等式问题,考查绝对值的性质和不等式恒成立问题的求解方法.函绝对值的不等式的解法:(1)定义法;即利用去掉绝对值再解(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;(5)不等式同解变形原理.20、(1)见解析(2)【解析】
(1)用导数讨论单调性,注意函数的定义域;(2)写出的具体形式,然后分离参数,进而讨论函数最值的范围,得出整数参量的取值范围.【详解】解:(1).由题意,函数的定义域为,当时,,单调增区间为:当时,令,由,得,,的单调递增区间为,的单调递减区间为:(2).由,因为对任意的恒成立当时对任意的恒成立,,只需对任意的恒成立即可.构造函数,且单调递增,,一定存在唯一的,使得即,.单调递增区间,单调递减区间.的最小的整数值为【点睛】本题考查用导数讨论函数单调性和函数的最值问题,其中用构造函数,属于函数导数不等式的综合题,难度较大.21、(1),(2)甲、乙两同学的判断均不正确,理由见解析【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年财务规划师资格考试《个人理财规划与税收筹划》备考题库及答案解析
- 商铺转让合同协议
- 人力资源服务派遣合同协议2025
- 清洁服务2025年雇佣协议
- 临时工2025年工作内容变更协议
- 2025年管理人员领导力与绩效评估考试试题及答案
- 地产项目广告合同范本
- 外贸平台销售合同范本
- 塑料灯壳定做合同范本
- 售后承诺合同范本模板
- GB 12021.2-2025家用电冰箱耗电量限定值及能效等级
- 2025年天津市中考物理试卷真题(含标准答案)
- 中陆集团兰州中凯工贸有限责任公司招聘笔试题库2025
- 智慧树知到《创新工程实践》(北京大学)章节测试答案
- 矿热炉检修施工方案
- 2024北京北师大实验中学初三(上)期中数学试题及答案
- 新疆地区历年中考语文古诗欣赏试题汇编(2003-2024)
- 2024高职单招考试(语文)试题(附答案)人人文库
- 小学生待客礼仪课件模板
- 食品安全知到智慧树章节测试答案2024年秋浙江大学
- 【MOOC】职场英语-西南交通大学 中国大学慕课MOOC答案
评论
0/150
提交评论