




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量的坐标表示和计算第1页,课件共19页,创作于2023年2月引入:1.平面内建立了直角坐标系,点A可以用什么来表示?2.平面向量是否也有类似的表示呢?A(a,b)ab第2页,课件共19页,创作于2023年2月3.复习平面向量基本定理:如果
e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量
a
,有且只有一对实数λ1
,λ2使得a=λ1
e1+λ2
e2.不共线的两向量
e1,e2
叫做这一平面内所有向量的一组基底.什么叫平面的一组基底?平面的基底有多少组?无数组第3页,课件共19页,创作于2023年2月其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(1)取基底:与x轴方向,y轴方向相同的两个单位向量i、j作为基底.xyoa⑴⑴式叫做向量的坐标表示.注:每个向量都有唯一的坐标.(一)平面向量坐标的概念(2)
任作一个向量a,由平面向量基本定理,有且只有一对实数x、y,使得a=xi+yj.我们把(x,y)叫做向量a的坐标,记作得到实数对:在直角坐标系内,我们分别第4页,课件共19页,创作于2023年2月例1.用基底i,j分别表示向量a,b,c,d,并求出它们的坐标.-4-3-2-11234AB12-2-1xy问1:设的坐标与的坐标有何关系?453第5页,课件共19页,创作于2023年2月若则问2:什么时候向量的坐标和点的坐标统一起来?问1:设的坐标与的坐标有何关系?问3:相等向量的坐标有什么关系?1AB1xyA1B1(x1,y1)(x2,y2)P(x,y)结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。第6页,课件共19页,创作于2023年2月向量的坐标与点的坐标关系向量P(x,y)一一对应第7页,课件共19页,创作于2023年2月小结:对向量坐标表示的理解:(1)任一平面向量都有唯一的坐标;(2)向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即为向量的坐标.(3)相等的向量有相等的坐标.第8页,课件共19页,创作于2023年2月练习:在同一直角坐标系内画出下列向量.解:第9页,课件共19页,创作于2023年2月(二)平面向量的坐标运算:结论2:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.结论3:实数与向量数量积的坐标等于用这个实数乘原来向量的相应坐标.第10页,课件共19页,创作于2023年2月已知,求的坐标.OxyB(x2,y2)A(x1,y1)结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。从向量运算的角度第11页,课件共19页,创作于2023年2月第12页,课件共19页,创作于2023年2月例3已知三个力(3,4),(2,5),(x,y)的合力++=求的坐标。解:由题设++=得:(3,4)+(2,5)+(x,y)=(0,0)即:∴∴(5,1)第13页,课件共19页,创作于2023年2月第14页,课件共19页,创作于2023年2月例5:已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。xyOA(-2,1)B(-1,3))C(3,4)D(x,y)第15页,课件共19页,创作于2023年2月OyxABCD例5:已知平行四边形ABCD的三个顶点的坐标分别是(-2,1)、(-1,3)、(3,4),求顶点D的坐标.第16页,课件共19页,创作于2023年2月变式:已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点。OyxABC解:当平行四边形为ADCB时,由得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6)D1D2当平行四边形为DACB时,得D3=(6,0)D3第17页,课件共19页,创作于2023年2月课堂总结:1.向量的坐标的概念:2.对向量坐标表示的理解:3.平面向量的坐标运算:(1)任一平面向量都有唯一的坐标;(2)向量的坐标与其起点、终点坐标的关系;(3)相等的向量有相等的坐标.4.能初步运用向量解决平面几何问题:“向量”的思想第18页,课件共19页,创作于20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆乌鲁木齐第十三中学2024-2025学年初三3月模拟考试数学试题含解析
- 新疆乌鲁木齐市四中2025届高三下学期学习能力诊断化学试题含解析
- 新乡医学院三全学院《中学化学教学设计与技能训练(一)》2023-2024学年第二学期期末试卷
- 2025至2031年中国礼品灯具行业投资前景及策略咨询研究报告
- 2025至2031年中国粉末冶金摩擦片及结构件行业投资前景及策略咨询研究报告
- 赣州市重点中学2024届中考联考数学试题含解析
- 2025年工厂安全培训考试试题答案完美版
- 2025年新入职工入职安全培训考试试题答案高清版
- 2024-2025项目安全培训考试试题【预热题】
- 2025年公司三级安全培训考试试题含答案【完整版】
- TMT行业市场发展现状及趋势与投资分析研究报告
- 2024年黑龙江哈尔滨市中考英语真题卷及答案解析
- 【MOOC】道路交通安全-河海大学 中国大学慕课MOOC答案
- 人教版二年级上册英语期中考试卷【3套】
- 2025年湖北省武汉市高考数学模拟试卷附答案解析
- 高中英语时态单选题100道及答案解析
- 【公开课】+纪念与象征-空间中的实体艺术+课件高中美术人美版(2019)美术鉴赏
- GB/T 44588-2024数据安全技术互联网平台及产品服务个人信息处理规则
- 物联网传感技术说课教学设计八年级上册
- TSG ZF001-2006《安全阀安全技术监察规程》
- 2024-2030年中国隐私计算行业发展模式及战略规划分析研究报告
评论
0/150
提交评论