




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定2.设两个正态分布N(μ1,)(σ1>0)和N(μ2,)(σ2>0)的密度函数图象如图所示,则有()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ23.若,则下列结论中不恒成立的是()A. B. C. D.4.函数(e=2.71828…是自然对数的底数)一定存在零点的区间是()A.(-1,0) B.(0,1) C.(1,2) D.(2,e)5.已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是()A. B. C. D.6.下列结论中正确的是()A.导数为零的点一定是极值点B.如果在附近的左侧,右端,那么是极大值C.如果在附近的左侧,右端,那么是极小值D.如果在附近的左侧,右端,那么是极大值7.若平面四边形ABCD满足,则该四边形一定是()A.正方形 B.矩形 C.菱形 D.直角梯形8.参数方程(θ∈R)表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线9.命题“,使”的否定是()A.,使 B.,使C.,使 D.,使10.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能()A. B.C. D.11.一只袋内装有个白球,个黑球,所有的球除颜色外完全相同,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了个白球,则下列概率等于的是()A. B. C. D.12.展开式的系数是()A.-5 B.10 C.-5 D.-10二、填空题:本题共4小题,每小题5分,共20分。13.集合中所有3个元素的子集的元素和为__________.14.如图,某建筑工地搭建的脚手架局部类似于一个
的长方体框架,一个建筑工人欲从
A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为______________.15.若(其中i为虚数单位),则z的虚部是________.16.已知函数,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为、、,且这名同学各门学科能否进复赛相互独立.(1)求这名同学三门学科都能进复赛的概率;(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.18.(12分)如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.19.(12分)选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若关于的不等式有实数解,求的取值范围.20.(12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量(单位:小时)光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数,参考数据:,,,21.(12分)如图,在矩形ABC中,,,E在线段AD上,,现沿BE将ABE折起,使A至位置,F在线段上,且.(1)求证:平面;(2)若在平面BCDE上的射影O在直线BC上,求直线与平面所成角的正弦值.22.(10分)已知函数,.(1)若,求函数的图像在点处的切线方程;(2)讨论的单调性.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A【点睛】本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.2、A【解析】由密度函数的性质知对称轴表示期望,图象胖瘦决定方差,越瘦方差越小,越胖方差越大,所以μ1<μ2,σ1<σ2.故选A.考点:正态分布.3、D【解析】分析两数可以是满足,任意数,利用特殊值法即可得到正确选项.详解:若,不妨设a代入各个选项,错误的是A、B,
当时,C错.
故选D.点睛:利用特殊值法验证一些式子错误是有效的方法,属于基础题.4、B【解析】
根据零点存在性定理,即可判断出结果.【详解】因为,所以,,,所以,由零点存在定理可得:区间内必有零点.故选B【点睛】本题主要考查判断零点所在的区间,熟记零点的存在定理即可,属于基础题型.5、C【解析】
利用导数研究函数y=的单调性并求得最值,求解方程2[f(x)]2+(1﹣2m)f(x)﹣m=1得到f(x)=m或f(x)=.画出函数图象,数形结合得答案.【详解】设y=,则y′=,由y′=1,解得x=e,当x∈(1,e)时,y′>1,函数为增函数,当x∈(e,+∞)时,y′<1,函数为减函数.∴当x=e时,函数取得极大值也是最大值为f(e)=.方程2[f(x)]2+(1﹣2m)f(x)﹣m=1化为[f(x)﹣m][2f(x)+1]=1.解得f(x)=m或f(x)=.如图画出函数图象:可得m的取值范围是(1,).故答案为:C.【点睛】(1)本题主要考查利用导数求函数的单调性,考查函数图像和性质的综合运用,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理转化能力.(2)本题的解答关键有两点,其一是利用导数准确画出函数的图像,其二是化简得到f(x)=m或f(x)=.6、B【解析】
根据极值点的判断方法进行判断.【详解】若,则,,但是上的增函数,故不是函数的极值点.因为在的左侧附近,有,在的右侧附近,有,故的左侧附近,有为增函数,在的右侧附近,有为减函数,故是极大值.故选B.【点睛】函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低(高)”的特性,用数学语言描述则是:“在的附近的任意,有()”.另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点,具体如下.(1)在的左侧附近,有,在的右侧附近,有,则为函数的极大值点;(1)在的左侧附近,有,在的右侧附近,有,则为函数的极小值点;7、C【解析】试题分析:因为,所以四边形ABCD为平行四边形,又因为,所以BD垂直AC,所以四边形ABCD为菱形.考点:向量在证明菱形当中的应用.点评:在利用向量进行证明时,要注意向量平行与直线平行的区别,向量平行两条直线可能共线也可能平行.8、A【解析】
利用平方关系式消去参数可得即可得到答案.【详解】由可得,所以,化简得.故选:A【点睛】本题考查了参数方程化普通方程,考查了平方关系式,考查了圆的标准方程,属于基础题.9、A【解析】
根据含有一个量词的命题的否定,可直接得出结果.【详解】因为特称命题的否定为全称命题,所以命题“,使”的否定是“,使”.故选A【点睛】本题主要考查含有一个量词的命题的否定,只需改量词与结论即可,属于基础题型.10、C【解析】
根据导数与函数单调性的关系,判断函数的单调性即可.【详解】由当时,函数单调递减,当时,函数单调递增,则由导函数的图象可知:先单调递减,再单调递增,然后单调递减,排除,且两个拐点(即函数的极值点)在x轴上的右侧,排除B.故选:.【点睛】本题主要考查的是导数与函数的单调性,熟练掌握函数的导数与函数单调性的关系是解题的关键,是基础题.11、D【解析】
当时,前2个拿出白球的取法有种,再任意拿出1个黑球即可,有种取法,在这3次拿球中可以认为按顺序排列,由此能求出结果.【详解】当时,即前2个拿出的是白球,第3个是黑球,前2个拿出白球,有种取法,再任意拿出1个黑球即可,有种取法,而在这3次拿球中可以认为按顺序排列,此排列顺序即可认为是依次拿出的球的顺序,即,.故选:D.【点睛】本题考查超几何分布概率模型,考查运算求解能力,属于基础题.12、D【解析】
由题意利用二项展开式的通项公式,求出(1﹣x)5展开式x3的系数.【详解】解:根据(1﹣x)5展开式的通项公式为Tr+1=•(﹣x)r,令r=3,可得x3的系数是﹣=﹣10,故选:A.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
集合A中所有元素被选取了次,可得集合中所有3个元素的子集的元素和为即可得结果.【详解】集合中所有元素被选取了次,∴集合中所有3个元素的子集的元素和为,故答案为.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.14、【解析】
先求出最近路线的所有走法共有种,再求出不连续向上攀登的次数,然后可得概率.【详解】最近的行走路线就是不走回头路,不重复,所以共有种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有种,故所求概率为.【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.15、3【解析】
直接根据虚部定义即可求出.【详解】解:z=﹣2+3i(其中i为虚数单位),则z的虚部是3,故答案为:3【点睛】本题考查了虚数的概念,属于基础题.16、【解析】,,解得,故,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】分析:(1),根据相互独立事件的概率的求法,即可求解三科都能进复赛的概率;(2)由题意,可得随机变量X可取,利用相互独立事件的概率求法,求得随机变量取每个值的概率,即可求得随机变量的分布列和数学期望.详解:设三科能进复赛的事件分别为A、B、C,则,,.(1)三科都能进复赛的概率为;(2)X可取0,1,2,1.;;;.所以,X的分布列为:X0121P数学期望点睛:本题主要考查了相互独立事件的概率的计算,以及随机变量的分布列和数学期望的求解,此类问题的解答中要认真审题,合理计算是解答的关键,着重考查了分析问题和解答问题的能力.18、(1)见解析(2)【解析】
(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.19、(1);(2)或.【解析】分析:(1)利用零点分类讨论法解不等式.(2)先求的最小值为,再解不等式得的取值范围.详解:(1)由题意的:,两边平方得:,即,解得或,所以原不等式的解集为.(2),所以的最小值为,所以,即或,亦即或.点睛:(1)本题主要考查绝对值不等式的解法和不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论思想方法.(2)解答本题的关键是求的最小值,这里利用了三角绝对值不等式求最值.20、(1),可用线性回归模型拟合y与x的关系;(2)2台光照控制仪.【解析】
(1)由题中所给的数据计算,进而结合参考数据计算相关系数,得出答案;(2)记商家周总利润为Y元,由条件可知至少需要安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元;②安装2台光照控制仪有2种情形:做出分布列即可求解.【详解】(1)由已知数据可得,所以相关系数因为,所以可用线性回归模型拟合y与x的关系.(2)记商家周总利润为Y元,由条件可知至少需要安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元;②安装2台光照控制仪的情形:当X>70时,只有1台光照控制仪运行,此时周总利润Y=3000﹣1000=2000元,当30<X≤70时,2台光照控制仪都运行,此时周总利润Y=2×3000=6000元,故Y的分布列为:Y20006000P0.20.8所以E(Y)=1000×0.2+5000×0.7+9000×0.1=4600元.综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设备销售合同第三方担保与售后服务协议
- 《养老保障与子女监护权变更的离婚协议》
- 物联网产业园区信息共享与数据交换平台方案
- 土建工程预拌混凝土供应方案
- 矿产资源开发合同中的矿业权抵押担保分析
- 物流企业股权转让与供应链优化合作协议
- 旅游度假区物业挂靠接管与旅游服务协议
- 建筑垃圾处置方案
- 离异双方签署未成年子女房产监护权及抚养费支付协议
- 二手房买卖合同签订前注意事项及法律风险提示
- 金属学第三章
- 人工智能训练师(5级)培训考试复习题库-上(单选题汇总)
- 小学科学-哪杯水热教学课件设计
- 酒店明住宿清单(水单)
- 《中国儿童维生素A、维生素D临床应用专家共识》解读
- 应用技术推广中心 报告1212
- 教学第七章-无机材料的介电性能课件
- 应急值班值守管理制度
- 外国文学史-总课件
- 《中小企业划型标准规定》补充说明
- 房屋租赁信息登记表
评论
0/150
提交评论