细胞的基本功能_第1页
细胞的基本功能_第2页
细胞的基本功能_第3页
细胞的基本功能_第4页
细胞的基本功能_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

细胞的基本功能第1页,课件共65页,创作于2023年2月第一节细胞的兴奋性和生物电

活的组织和细胞无论在安静或者活动状态时都具有电的变化,是一种生理现象。临床上使用的心电图、脑电图就是心脏、大脑皮质活动时记录下来的生物电变化的图形。第2页,课件共65页,创作于2023年2月

生物电和电生理学生物体在生命活动过程中所表现的电现象称为生物电(bioelectricity)。有关生物电的研究构成一门学科,称为电生理学(electrophysiology)。电生理学的研究领域包括细胞和组织的电学特性及其在不同条件下的变化、生物电现象和各种生理功能的关系以及不同功能单元之间的电活动的相互关系等。电生理学的发生和发展,从一开始就是同电学和电化学的研究以及电子学测量和控制仪器的应用密切相关的。第3页,课件共65页,创作于2023年2月

电生理学的发展历史十八世纪末,伽尔瓦尼(Galvani)在研究蛙的神经肌肉标本时就发现,如用两种金属导体接触神经和肌肉构成回路,肌肉就会产生颤抖,据此提出了神经和肌肉各自带有“动物电”的著名论断。伽尔瓦尼的后继者直接用一神经-肌肉标本置于另一标本的损伤处,也引起肌肉收缩,从而出色地验证了生物电的存在。第4页,课件共65页,创作于2023年2月电生理学的发展历史上世纪二十年代,阴极射线示波器应用于生理学研究标志着现代电生理学的开始。四十年代初,微电极技术(microelectrodetechnique)的发展,使人们有可能在细胞水平上深入研究生物电的本质。六十年代以来,生理学研究日益广泛地引进电子计算机技术,从而有可能在急性和慢性动物实验的条件下,对生物电活动进行精确的定量分析,使生物电的研究进入了一个崭新的发展阶段。

第5页,课件共65页,创作于2023年2月阴极射线示波器第6页,课件共65页,创作于2023年2月微电极技术常用微电极技术(microelectrodetechnique)记录神经细胞的静息电位。第7页,课件共65页,创作于2023年2月本节内容一细胞生物电现象二生物电现象的产生机制三

兴奋的引起四兴奋性的变化五兴奋的传导

返回章首第8页,课件共65页,创作于2023年2月一细胞生物电现象细胞生物电现象主要有以下几种表现形式:静息电位、动作电位、损伤电位。(一)静息电位(restingpotential)在静息(安静)时,细胞膜内外存在的电位差称为跨膜静息电位,简称静息电位。所有细胞的静息电位都表现为膜内带负电,膜外带正电。细胞安静时,这种膜内为负,膜外为正的状态称为极化状态。

第9页,课件共65页,创作于2023年2月

静息电位的数量表述如果规定膜外电位为零,则所有静息电位均为负值。膜内电位大都在-10~-100mV之间。例如,枪乌贼的巨大神经轴突和蛙骨骼肌细胞的静息电位为-50~-70mV,哺乳动物的肌肉和神经细胞为-70~-90mV,人的红细胞为-10mV。第10页,课件共65页,创作于2023年2月(二)动作电位(actionpotential)

1定义:

可兴奋细胞(神经细胞、肌细胞、腺细胞)在受到刺激而发生兴奋时,细胞膜在原有静息电位的基础上发生一次短暂、快速的电位波动,一次刺激导致一个电位波动,代表一次兴奋。这种电位波动就是动作电位。这种波动可向周围扩布,动作电位是可兴奋细胞发生兴奋时所具有的特征性表现,常用作兴奋性的指标。第11页,课件共65页,创作于2023年2月2电位变化过程:先出现膜内、外电位差减少至消失,称为去极化(depolarization);进而膜两侧电位倒转,成为膜外带负电,膜内带正电,称为反极化;极性的倒转部分(图中由膜电位0到+40mV)称为超射(overshoot);最后,膜电位恢复到膜外带正电,膜内带负电的静息状态,称为复极化(repolarization)。上升支称为去极相,包括去极化和反极化。下降支称为复极相,表示膜电位复极化过程。

第12页,课件共65页,创作于2023年2月

3各种兴奋细胞持续时间不同。

在不同的可兴奋细胞,动作电位虽然在基本特点上类似,但变化的幅值和持续时间可以各有不同。神经和骨骼肌细胞的动作电位的持续时间以一个或几个毫秒计。神经纤维,它一般在0.5~2.0ms的时间内完成,这使它在描记的图形上表现为一次短促而尖锐的脉冲样变化,因而人们常把这种构成动作电位主要部分的脉冲样变化,称之为锋电位(spike)。心肌细胞的动作电位则可持续数百毫秒,时间较长呈平台状。

第13页,课件共65页,创作于2023年2月

(三)

损伤电位

细胞的表面,由于损伤而发生去极化,而使得完好部位与损伤部位出现电位差。完好部位较正,损伤部位较负。返回节目录第14页,课件共65页,创作于2023年2月二生物电现象的产生机制(膜离子理论)

膜离子理论有三个要点:1、前述各种电位变化都是发生在细胞膜的两侧。2、各种带电离子的浓度在细胞内液和外液中显著不同(膜内有较多的K+和带负电的大分子有机物,膜外有较多的Na+和Cl—)。3、细胞膜在不同情况下,对某些离子的通透性有明显改变(细胞膜分子结构液体镶嵌模型认为:镶嵌于脂质双分子层中的各种蛋白质通道,分别对某种离子有选择性通透,而且这种通透能力在各种生理条件下是可变的)。

第15页,课件共65页,创作于2023年2月

建立膜离子理论的科学家Hodgkin和Huxley于20世纪50年代,Katz于60年代由于用电压钳对神经突触和细胞膜离子通道学说的研究而分别获得了诺贝尔生理学或医学奖。第16页,课件共65页,创作于2023年2月(一)静息电位的产生静息状态下,膜内的K+浓度高于膜外的,而Na+、Cl-则是膜外的高于膜内的,而细胞外Na+浓度总是超过细胞内Na+浓度很多。细胞细胞内液浓度细胞外液浓度Na+K+Cl-Na+K+Cl-枪乌贼轴突乌贼轴突蟹轴突蛙神经蛙缝匠肌狗肌肉49435237151241036041011012514040-26-1.2-4404505101101101502217122.62.645605405407777120第17页,课件共65页,创作于2023年2月静息电位的产生

第18页,课件共65页,创作于2023年2月静息状态下跨膜电位差的产生在安静状态下,通道仅对K+开放,对Na+通透性很小,而对膜内带负电的生物大分子则完全不通透。由于高浓度的离子具有较高的势能,K+有向膜外扩散的趋势,而Na+有向膜内扩散的趋势。因此,它们只允许K+带着正电荷从膜内向膜外扩散,带负电的生物大分子停留在膜内,这样就出现了膜外带正电,膜内带负电的结果,即产生外正内负的跨膜电位差。第19页,课件共65页,创作于2023年2月

静息状态下跨膜电位差的大小K+在向外流动的过程中,使膜两侧的电位差逐渐增大,从而阻止了K+无限制外流。一旦由于浓度梯度而使K+外流的力量和电位差阻止K+外流的力量相等时,K+的流动就达到一种动态平衡。于是,K+外流使膜内外形成一个稳定的电位差,这就是静息电位。K+平衡电位所能达到的数值,是由膜两侧原初存在的K+浓度差的大小决定的,它的精确数值可根据物理化学上著名的Nernst公式算出。第20页,课件共65页,创作于2023年2月

Nernst方程式如果只考虑K+分布的不平衡,则静息膜电位的大小与Nernst方程式(下式)计算的结果相同,即等于K+平衡电位。

第21页,课件共65页,创作于2023年2月

(二)动作电位的产生

神经、肌肉的细胞膜上存在Na+通道和K+通道,通道一旦被激活,则膜对相应离子的通透性增大。但膜对Na+、K+通透性增高在时间上是不一致的。当刺激强度达到阈强度时,Na+通道几乎立即被激活,比安静时大500倍左右。由于膜内外Na+的浓度差很大,因此大量的Na+内流,膜两侧的电位差就急剧减小,进而极化状态倒转,直至新形成的膜内正电位足以阻止Na+继续内流为止。这时膜两侧的电位差就相当于Na+的平衡电位。

第22页,课件共65页,创作于2023年2月第23页,课件共65页,创作于2023年2月

复极化动作电位的时程很短,膜内出现正电位以后钠通道很快因“失活”而关闭,从而使膜对Na+的通透性变小。这时,膜对K+通透性增大,并很快超过对Na+的通透性,于是膜内K+由于浓度差和电位差的推动而外流,直至恢复到安静时接近K+平衡电位的电位水平,此过程就是复极化。第24页,课件共65页,创作于2023年2月

Na+-K+泵复极后,虽然已恢复到静息电位水平和恢复膜对Na+、K+的通透性,但膜内外离子分布尚未恢复。此时膜内Na+稍增多,膜外K+也增加,从而激活了膜上的Na+-K+泵,将胞内多余的Na+泵出膜外,胞外多余的K+运回膜内,从而使膜内外离子分布恢复到安静时水平。它是逆着浓度差进行的耗能过程,能量来源于ATP,所以Na+-K+泵的活动是离子的主动转运过程。第25页,课件共65页,创作于2023年2月其它离子的作用除Na+、K+外,其它离子如Ca2+、Cl-也与静息电位和动作电位有关。静息电位的维持除K+的外流外,Na+、Cl-的内流也起了一定的作用。发生动作电位时,除了Na+、K+流外,至少还有Ca2+的内流,Ca2+的内流量虽然不多,但很重要,特别是对神经末梢和肌纤维的激活,Ca2+是必不可少的。

返回节目录第26页,课件共65页,创作于2023年2月三兴奋的引起1.刺激与阈刺激刺激引起兴奋的条件:(1)一定的强度.(2)一定的持续时间(3)一定的时间-强度变化率第27页,课件共65页,创作于2023年2月

一些相关的概念阈强度(thresholdintensiy):要想引起组织兴奋,必须使刺激达到一定的强度并维持一定的时间,刚好能引起组织兴奋的刺激强度称为阈强度。阈刺激(thresholdstimulus):达到这一临界强度的刺激才是有效刺激。高于阈强度的刺激当然也是有效的,称为阈上刺激。低于阈强度的刺激则不能引起兴奋,称为阈下刺激。第28页,课件共65页,创作于2023年2月一些相关的概念基强度:要使组织发生兴奋,刺激强度有一个最低限制,刺激强度低于这一强度,无论刺激时程延长多久都不能使组织兴奋。当刺激强度为基强度的2倍时,刚能引起反应所需的最短刺激持续时间就是时值。测定方法是先用持续时间较长的刺激求得基强度,然后将刺激强度固定为2倍基强度,再改变刺激作用时间,测得刚能引起反应所需要的最短时间,即为时值。时值小表示兴奋性高;时值大表示兴奋性低。第29页,课件共65页,创作于2023年2月

常用的兴奋性指标常用的兴奋性指标有两种:阈强度和时值。第30页,课件共65页,创作于2023年2月测定阈强度的方法固定一适中的刺激作用时间,由低到高逐渐增加刺激强度,测得刚能引起反应所需的最低强度。阈强度愈低,意味着组织愈容易被兴奋,即兴奋性愈高;反之,阈强度愈高,则兴奋性愈低。第31页,课件共65页,创作于2023年2月2.阈电位与动作电位阈电位:是从细胞膜本身膜电位的数值来考虑,当膜电位去极化到某一临界数值,出现膜通道大量开放,钠离子大量内流产生动作电位的这个临界值。第32页,课件共65页,创作于2023年2月动作电位的“全或无”性质阈刺激或刺激阈值是能使细胞膜静息电位降到阈电位水平的最小刺激或刺激强度。不论阈刺激还是阈上刺激,对同一细胞产生的动作电位的幅度都相同,或者说都达到最大值,而阈下刺激则不引起动作电位,所以动作电位具有“全或无”性质。这就是所谓的单细胞的“全或无”现象。

第33页,课件共65页,创作于2023年2月3.阈下刺激、局部反应及总和

阈下刺激能引起该段膜中所含Na+通道的少量开放,这时少量Na+内流造成的去极化和电刺激造成的去极化叠加起来,在受刺激的膜局部出现一个较小的去极化,称为局部反应或局部兴奋。

第34页,课件共65页,创作于2023年2月总和:几个阈下刺激所引起的局部反应可以叠加起来,称为总和,如果总和到使静息电位减少到阈电位时也可产生动作电位。包括空间性总和和时间性总和。第35页,课件共65页,创作于2023年2月局部兴奋的特点①它不是全或无的。随刺激增加而增大;②不能在膜上作远距离传播。可以电紧张性扩布的形式使邻近的膜也产生类似的去极化,衰减的;③没有不应期,可以总和。总和到使静息电位减少到阈电位时也可产生动作电位。包括空间性总和时间性总和。第36页,课件共65页,创作于2023年2月阈下刺激的作用阈下刺激引起局部去极化,也就是静息电位距阈电位的差值减小,这时膜如果再受到适宜的刺激,就比较容易达到阈电位而产生兴奋。因此局部反应可使膜的兴奋性提高。

返回节目录第37页,课件共65页,创作于2023年2月四兴奋性的变化神经和骨骼肌肉纤维在接受一次有效刺激的当时和以后相当短的时间内,兴奋性将经历一系列有顺序的变化,然后才恢复正常。第38页,课件共65页,创作于2023年2月兴奋性变化经历4个时期1绝对不应期:紧接兴奋之后,出现一个非常短暂的,兴奋性由原有水平降低到零,此时无论刺激强度多大,都不能引起第二次兴奋。2相对不应期:继之出现的是相对不应期,兴奋性逐渐上升,但仍低于原水平,需要比正常阈值强的刺激才能引起兴奋。

3超常期:兴奋性高于原水平,利用低于正常阈值的刺激即可引起第二次兴奋。4低常期:然后出现一个持续时间相对长的,再此期内,组织的兴奋性又低于正常值。

最后,兴奋性逐渐恢复到正常水平。第39页,课件共65页,创作于2023年2月

不同细胞兴奋性变化的时期不完全相同心肌无低常期;各个时期的持续时间也不同。比如神经纤维和骨骼肌纤维的绝对不应期就远远短于心肌细胞的绝对不应期。第40页,课件共65页,创作于2023年2月兴奋性变化过程与动作电位发展过程之间的联系神经纤维的动作电位如果采用高倍放大和慢扫描,则原图所示的上升相和下降相显示为一高幅的尖峰,因而称为锋电位(spike)。锋电位在刺激之后出现,持续时间极短,近似绝对不应期和相对不应期的时间。所以锋电位代表了组织的兴奋过程。负后电位大致和超常期相当,此时膜处于部分去极化状态;正后电位则与低常期相符合,此时膜处于超极化状态,膜两侧电位差低于静息电位。

第41页,课件共65页,创作于2023年2月返回节目录第42页,课件共65页,创作于2023年2月五兴奋在同一细胞上的传导机制

—局部电流第43页,课件共65页,创作于2023年2月无髓神经纤维上的传导无髓神经纤维:受到足够强的外加剌激而出现动作电位,该处出现了膜两侧电位的暂时性倒转,由静息时的内负外正变为内正外负,但和该段神经相邻接的神经段仍处于安静时的极化状态;于是在已兴奋的神经段和与它相邻的未兴奋的神经段之间,由于电位差的出现而发生电荷移动,称为局部电流(localcurrent)。第44页,课件共65页,创作于2023年2月运动方向:在膜外的正电荷由未兴奋段移向已兴奋段,而膜内的正电荷由已兴奋段移向未兴奋段。这样流动的结果,是造成未兴奋段膜内电位升高而膜外电位降低,亦即引起该处膜的去极化;当局部电流的出现使邻接的未兴奋的膜去极化到阈电位时,也会使该段出现它自己的动作电位。

第45页,课件共65页,创作于2023年2月有髓神经纤维上的传导当有髓纤维受到外来剌激时,动作电位只能在邻近剌激点的郎飞结处产生,构成髓鞘主要成分的脂质是不导电或不允许带电离子通过的,而局部电流也只能发生在相邻的郎飞结之间,其外电路要通过髓鞘外面的组织液,这就使动作电位的传导表现为跨过每一段髓鞘而在相邻的郎飞结处相继出现,这称为兴奋的跳跃式传导(saltatoryconduction)。跳跃式传导时的兴奋传导速度比无髓纤维或肌细胞的传导速度快得多;而且它还是一种更“节能”的传导方式。第46页,课件共65页,创作于2023年2月

动作电位传导的实质所谓动作电位的传导,实际是已兴奋的膜部分通过局部电流“刺激”了未兴奋的膜部分,使之出现动作电位。兴奋在其他可兴奋细胞(如骨骸肌细胞)的传导,基本上遵循同样的原理。第47页,课件共65页,创作于2023年2月传导的特点

1生理完整性:神经传导首先要求神经纤维在结构上和生理机能上都是完整的。2双向传导:刺激神经纤维的任何一点,所产生的兴奋均可沿纤维向两侧方向传导。3非递减性:在传导过程中,锋电位的幅度和传导速度不因距离兴奋点渐远而有所减小。4绝缘性:当某一神经纤维兴奋时,冲动只沿本身传导,而不会扩展到邻近的神经纤维,这称为绝缘性传导。5相对不疲劳性:与肌肉组织比较,神经传导相对不易疲劳。

返回节目录

返回章首第48页,课件共65页,创作于2023年2月第二节兴奋在细胞间的传递

一细胞间信息传递的主要形式——化学性信号

大多数细胞周围是细胞间液,细胞通过自身制造和释放某些化学物质,通过细胞外液的扩散和运输,到达相应的细胞,影响后者的功能活动,完成信息传递。第49页,课件共65页,创作于2023年2月二相邻细胞间的直接电联系电突触:神经细胞和一般相互领接的细胞之间存在的直接电联系。细胞之间的低电阻通道,它们可能是直接电传递的结构基础。这种直接电联系传递速度快、受外界影响小,方向性不强,几乎不存在突触延搁。第50页,课件共65页,创作于2023年2月电突触电突触又称缝隙突触或缝隙连接。电突触在无脊椎动物(如虾、蟹)和低等脊椎动物(如鱼类)神经元之间较常见,在哺乳动物中枢神经系统中也存在。第51页,课件共65页,创作于2023年2月细胞间化学性联系的两种类型A.激素等化学性信号在靶细胞处的跨膜信息传递(受体—第二信使系统)

指大多数含氮激素(肽类、蛋白质、胺类)还有小分子甾体激素类化学性信号(激素信使)通过血液运输到特定靶细胞、组织、细胞发挥生理功能。B.神经递质在突触处的跨膜信息传递(受体—膜通道类型)(本章论述)第52页,课件共65页,创作于2023年2月神经递质在突触处的跨膜信息传递(1)突触(synapse):多数神经元与神经元之间仅表现为相互接触,两个神经元相接触的部位叫做突触。(2)神经—肌肉接头(neuromuscularjunction):神经元的触突末梢与所支配的肌细胞相接触的部位,也称为运动终板。(3)神经递质(neurotransmitter):神经冲动到达神经末梢时,首先引起储存在该膜处内侧囊泡中的某些化学物质释放出来,这些化学物质称为神经递质。第53页,课件共65页,创作于2023年2月1.神经—肌肉接头(运动终板)的功能特点接头前膜:内含大量线粒体和小泡(内含递质)接头间隙:胆碱酯酶接头后膜(终板膜):骨骼肌细胞膜凹陷,向内凹入,含胆碱酯酶,是乙酰胆碱(Ach)受体所在部位第54页,课件共65页,创作于2023年2月突触前终末膜和终板膜则分别称为突触前膜和突触后膜,合称突触膜。突触前终末内含有大量直径50nm为左右的囊泡,称突触囊泡,它是突触部位最引人注目的结构。组织化学研究证明,囊泡内含有乙酰胆碱(Ach)。第55页,课件共65页,创作于2023年2月2.神经—肌肉接头的兴奋传递过程

神经冲动沿神经纤维到达末梢,末梢去极化,神经膜上钙通道开放,细胞外液中一部分Ca2+移入膜内,刺激小泡Ach释放,Ach通过接头间隙向肌细胞膜扩散,并与肌细胞膜表面受体结合,这种递质-受体复合物使肌细胞膜通透性改变,可允许Na+、K+甚至Ca2+通过,结果导致终膜处原有静息电位减少,出现膜去极化,这种电位变化,称为终板电位。如果在极短时间内同时有大量的囊泡破裂,则可导致终出现比微终板电位大的多的去极化。达到阈值时可导致肌纤维收缩。第56页,课件共65页,创作于2023年2月终板电位是一种局部电位终板电位是一种局部电位(局部兴奋),它只能扩布到终板膜周围的一般肌细胞膜,使后者也发生去极化,并且当达到阈电位水平时就触发一次向整个肌细胞作全或无式传导的动作电位,从而完成一次神经-肌肉的兴奋传递过程。第57页,课件共65页,创作于2023年2月兴奋由神经向肌肉的传递过程(1)神经冲动到达突触前终末,通过兴奋-分泌耦联,导致Ach释放突触间隙(2)释放入突触间隙的Ach扩散至终板膜,并与其上的Ach受体结合,使受体构型发生改变,继而改变邻近的离子通道构型,从而使终板膜对Na+、K+通透性改变,去极化而产生终板电位(3)终板电位扩布到邻近一般肌细胞膜,使其去极化,达到阈电位引发肌肉动作电位。(4)释放到突触间隙内富余Ach的处理第58页,课件共65页,创作于2023年2月兴奋-分泌耦联神经冲动导致Ach释放意味着电位信息转化为化学信息,表明突触前终末除有兴奋机能外,尚有分泌机能。将电信息和化学信息联系起来

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论