zifeng教你学做智能车-挑战飞思卡尔之6-光电管型设计_第1页
zifeng教你学做智能车-挑战飞思卡尔之6-光电管型设计_第2页
zifeng教你学做智能车-挑战飞思卡尔之6-光电管型设计_第3页
zifeng教你学做智能车-挑战飞思卡尔之6-光电管型设计_第4页
zifeng教你学做智能车-挑战飞思卡尔之6-光电管型设计_第5页
已阅读5页,还剩199页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章智能汽车设计实践——

光电管型设计

6.1机械设计

1

6.2硬件设计

2

6.3软件设计

3第6章智能汽车设计实践——光电管型设计

6.1机械设计6.1.1光电管传感器的布局6.1.2舵机的安装6.1.3测速传感器的安装6.1.1光电管传感器的布局1.传感器的布局间隔2.传感器的径向探出距离传感器的布局间隔各个传感器的布局间隔对智能车的运行,是有一定影响的。传感器的间隔是否合适,对过弯的精确性以及防止飞车有很大的影响。设定传感器间隔的原则是:既要满足一定的密度以保证走弯道时轨迹相对精确,又要尽可能拥有大的横向控制范围来防止飞车。若传感器间隔设置合适,当赛道有一点微小的变化时,小车的控制单元就能进行相应的反应(改变前轮转角),从而使得过弯道的轨迹与弯道大体重合,精确性好。传感器的径向探出距离(1)“一”字形布局:“一”字形布局是传感器最常用的布局形式,即各个传感器在一条直线上,从而保证纵向的一致性,使其控制策略主要集中在横向上,其排布如图6.1所示。图6.1“一”字形布局传感器的径向探出距离(2)“八”字形布局:“八”字形布局从横向来看与“一”字形布局类似,但它增加了纵向的特性,从而具有了一定的前瞻性,其排布如图6.2所示。图6.2“八”字形布局传感器的径向探出距离(3)“W”字形布局:为了能够提早地预测到弯道的出现,我们还可以将左右两端的传感器进行适当前置,从而形成“W”形布局,此外,还可利用“W”形布局来检测赛道的弯曲程度。其光电管排布如图6.3所示。图6.3“W”字形布局6.1.2舵机的安装在智能车上,舵机的输出转角通过连杆传动控制前轮转向。舵机是系统中一个具有较大时间常数的惯性环节。其时间延迟正比于转过的角度,反比于舵机的响应速度。对于快速性要求极高的智能小车来说,舵机的响应速度是影响其过弯最高速度的一个重要因素,特别是对于前瞻不够远的智能小车更是如此。6.1.2舵机的安装提高舵机控制前轮转向速度的一种方法是采用杠杆原理,在舵机的输出舵盘上安装一个较长的输出臂,其安装图如图6.4所示。图6.4舵机的安装图6.1.3测速传感器的安装为了减轻智能车的质量,测速时应尽量选用质量轻精度高的传感器,为了不影响加速性能,编码器的传动齿轮较小,基本上和电机的齿轮相同。其安装图如图6.5所示。图6.5测速传感器的安装6.2硬件设计6.2.1HCS12控制核心6.2.2电源管理单元6.2.3路径识别单元6.2.4车速检测模块6.2.5舵机控制单元6.2.6直流驱动电机控制单元6.2硬件设计硬件电路设计是智能车控制系统设计的基础。智能车控制系统硬件结构主要由HCS12控制核心、电源管理单元、路径识别电路、车速检测模块、转向伺服电机控制电路和直流驱动电机控制电路组成,其系统硬件结构如图6.6所示。图6.6系统硬件结构图6.2.1HCS12控制核心HCS12控制核心单元既可以直接采用组委会提供的MC9S12EVKX电路板,也可以自行购买MC9S12DG128单片机,然后量身制作适合自己需要的最小开发系统。6.2.1HCS12控制核心MC9S12DG12B单片机引脚图如图6.7所示。图6.7MC9S12DG12B单片机引脚图6.2.1HCS12控制核心在光电管方案中,其I/O口具体分配如下:PH口与PA口用于小车光电发光管发光控制;PT0用于车速检测的输入口;PB口用于显示小车的各种性能参数;PWM0(PP0引脚)与PWM1(PP1引脚)合并用于伺服舵机的PWM控制信号输出;PWM2(PP2引脚)与PWM3(PP3引脚)合并用于驱动电机的PWM控制信号输出(电机正转);PWM4(PP4引脚)与PWM5(PP5引脚)合并用于驱动电机的PWM控制信号输出(电机反转)。在连续路径识别算法中,PAD口用于传感区光电接收管电压信号的输入口。6.2.2电源管理单元电源管理单元是智能车硬件设计中的一个重要组成部分,它的作用是对组委会提供的7.2V1800mANi-cd蓄电池进行电压调节。按照系统各部分正常工作的需要,各模块电压值分为5V,6.5V和7.2V三个挡。6.2.2电源管理单元电源管理单元主要用于以下三个方面:(1)采用稳压管芯片L7805CV将电源电压稳压到5V后,给单片机系统电路、路径识别的光电传感器电路、车速检测的转角编码器电路和驱动芯片MC33886电路供电;(2)经过一个二极管降至6.5V左右后供给转向伺服电机;(3)直接供给直流驱动电机。6.2.2电源管理单元同时考虑到稳压芯片L7805CV的额定输出电流较小,故采用两片L7805CV分别对单片机电路、车速检测电路、驱动芯片电路和光电传感器电路供电,以保证系统正常运行。其稳压电路如图6.8所示。图6.8稳压电源单元6.2.3路径识别单元在光电管方案中,通过红外发光管发射红外光照射跑道,由于跑道表面与中心线具有不同的反射强度,因此利用红外接收管可以检测到这些信息。通过合理安排红外发射/接收管的空间位置可以检测到智能车相对于前方道路的位置。红外发射接收管一般安放在模型车前端,可以安装成一排,也可以前后安装两排,传感器的总数量受到比赛规则的限制。6.2.3路径识别单元红外接收管接收道路反射的红外光后产生电压的变化,它可以反映出赛道中心线的位置。这个电压信号可以通过外部的电压比较器变成高、低电平由单片机的I/O端口读取,也可以通过单片机A/D端口直接读取。从I/O端口读取的参考电路如图6.9所示,从A/D端口直接读取的参考电路如图6.10所示。

图6.9I/O端口读取电路图6.10A/D端口读取电路6.2.3路径识别单元两个光电管方案中常见的问题1.相邻光电管之间的干扰2.光电管发射功率的影响相邻光电管之间的干扰由于红外发射管是基于漫反射原理的,其发射的红外光可能影响到安装在附近的红外接收管。消除这种干扰可以采取以下几种措施:(1)选择发射与接收方向性好的红外传感器。(2)选择发射与接收一体化的红外传感器,它的外壳可以抑制相邻干扰。(3)在红外接收管上安装黑色套管,使其只接收前方一定角度内的红外光线,这种减小互扰动的措施效果较好。(4)使相邻的红外发射/接收管交替工作(即“点火”)。这种方法不仅减小了相邻红外传感器之间的干扰,同时也降低了整体传感器的功耗。光电管发射功率的影响为了增加前瞻距离,需要加大光电管红外发射功率,使得返回的红外线的强度提高,这样不仅使得电池电能的消耗量增加,同时也会缩短红外发射管的寿命。为解决这个问题,可以利用红外接收管响应速度快的特点,采用光电管脉冲发射/接收的方法加以处理。红外发射管工作在周期脉冲方式下,可以大大降低平均工作电流,从而降低了整个发射电路的电量消耗。6.2.4车速检测模块为了使得模型车能够平稳地沿着赛道运行,除了控制前轮转向舵机以外,还需要控制车速。通过对速度的检测,可以对车模速度进行闭环反馈控制。此外,若采用基于路径记忆的控制策略,为了获取道路信息,需要得到智能车的行驶距离,也必须通过车速检测模块来间接实现。6.2.4车速检测模块车速检测一般是通过检测驱动电机转速来实现的。比赛中所使用的常见测速方法列举如下:1.转角编码盘2.反射式光电检测3.霍尔传感器检测转角编码盘转角编码盘分为绝对位置输出和增量式位置输出两种。一般可使用增量式编码盘。它输出脉冲的个数正比于电机转动的角度,从而使编码盘输出脉冲的频率正比于转速。可以通过测量单位周期内脉冲个数或者脉冲周期得到脉冲的频率。反射式光电检测许多队伍在后轮齿轮传动盘上粘贴一个黑白相间的码盘,通过安装在码盘侧面的反射式红外传感器,来读取光码盘的转动脉冲。其原理和转角编码盘的测速机理是类似的。霍尔传感器检测在后轮轮毂上粘贴1个或者2个小型的永磁体,附近固定一个霍尔传感器。霍尔元件有3个引脚,其中2个分别是电源引脚和接地引脚,另一个是输出信号引脚,只要通过一个上拉电阻接至5V电压,就可以形成开关脉冲信号。后轮电机每转1周,则可以产生1个或者2个脉冲信号。这种方式简易、廉价,但测速精度不如前面的方法,因为永磁体本身的体积决定了不可能在后轮轮毂上安装过多磁片,对测速精度要求不高的队伍可以考虑此方法。6.2.5舵机控制单元舵机本身是一个位置随动系统。它是由舵盘、减速齿轮组、位置反馈电位计、直流电机和控制电路组成的。通过内部的位置反馈,使它的舵盘输出转角正比于给定的控制信号,因此对于它的控制可以使用开环控制方式。在负载力矩小于其最大输出力矩的情况下,它的输出转角正比于给定的脉冲宽度。但实际上,由于舵机反应的延迟性,智能车的舵机转角通常不能在一个控制周期内到达指定的设定角度,因此,可以在舵机外部再安装一个位置反馈装置,构成双闭环系统,以实时检测和控制舵机的转动角度。6.2.5舵机控制单元舵机控制单元采用组委会提供的Futaba公司S3010型舵机作为智能车方向控制部件。图6.14转向伺服电机实物图6.2.6直流驱动电机控制单元直流驱动电机控制电路主要用来控制直流电动机的转动方向和转动速度。改变直流电动机两端的电压可以控制电动机的转动方向;而控制直流电动机的转速,则有不同的方案,较常规的方法是采用PWM控制。驱动电路既可以直接采用MC33886电机驱动芯片,也可以采用大功率MOS管来自行设计电机驱动电路。MC33886全桥驱动电路采用MC33886的全桥驱动时,为了提供更大的驱动电流,可以将多片MC33886并联使用,其采用3片MC33886并联方式驱动电机硬件电路如图6.15所示。图6.15电机驱动硬件电路图大功率MOS管电机驱动电路采用大功率MOS管组成电机驱动电路时,在保证大电流驱动电机的同时,可以有效地避免多片MC33886并联时由于芯片分散性导致的驱动芯片某些片发热某些不发热的现象。但由分离元件组成的驱动电路的稳定性低于集成芯片。图6.16MOS管组成电机驱动电路

6.3软件设计6.3.1初始化算法6.3.2路径离散识别算法6.3.3路径连续识别算法6.3.4控制策略及控制算法

6.3软件设计在智能车控制系统光电管方案的软件设计中,程序的主流程是:先完成单片机初始化(包括I/O模块、PWM模块、计时器模块、定时中断模块初始化)之后,通过无限循环语句不断地重复执行路径检测程序、数据处理程序、控制算法程序、舵机输出及驱动电机输出程序。其中,定时中断用于检测小车当前速度,作为小车速度闭环控制的反馈信号。6.3软件设计光电管方案主程序流程图如图6.17所示。图6.17光电管方案主程序流程图6.3.1初始化算法1.锁相环初始化2.A/D初始化3.PWM初始化4.定时器初始化6.3.2路径离散识别算法路径离散识别算法是通过普通I/O端口将光电管接收端的电压值读入单片机,根据端口输入的高、低电平逻辑来判断该传感器是否处于黑色引导线上方,再筛选出所有处于引导线上方的传感器,便可以大致判断出此时车身相对道路的位置,确定出路径信息。6.3.2路径离散识别算法路径离散识别算法简便易行,因为输入量为开关量,所以对硬件及算法的要求都比较低,在传感器数目较多的情况下也可以实现较高的识别准确性。但它的一个缺陷在于路径信息只是基于间隔排布的传感器的离散值,对于两个相邻传感器之间的“盲区”无法提供有效的距离信息,因此其路径识别精度极大地受限于传感器的间距。此外,由于离散算法得到的路径信息是离散值,如果将离散的路径信息直接应用到转向及车速控制策略中去,会导致转向及车速调节的阶跃式非连续变化,这将会对智能车的性能产生不利影响。此时,舵机转向及车速控制僵硬,舵机对路径变化反应不灵敏,舵机输出转向相对于路径为阶跃式延迟响应,易产生超调及振荡现象,对于追求高车速、短决策周期的控制策略来说,很可能因为舵机响应不及时而造成控制失效。6.3.3路径连续识别算法路径连续识别算法是通过单片机A/D口将接收管电压读入。道路中心线相对于各个红外接收管的距离所引起的电压变化经A/D转换成相应的数字量,然后通过插值运算可以得到更加精确的路径信息。然而,由于器件制造工艺引起的分散性问题,各个光电管的性能特性存在很大的差异,特别是电压波动范围相差较大,这就给算法制定统一的标准带来了困难。为了解决这一问题,可以采用归一化方法——把各传感器的电压值都处理成相对于该传感器最大电压(白区的电压)和最小电压(黑区的电压)的变化百分比,以使所有的特性曲线的范围都将在0~100之间。6.3.3路径连续识别算法在比赛前先对光电管进行预标定,找到各光电管对黑线的敏感程度,将预标定过程中各个光电管的最大值和最小值存下来,用最大值减去最小值得到每个传感器在赛道上的输出范围,小车行驶过程中,将每个传感器输出的信号减去最小值,再除以该传感器的输出范围即可得到其相对输出值,然后找到其中最大的那个值。该值对应的光电管下面的黑线比例为最大,然后找到此光电管旁的另外两个光电管。可以根据这三个值可以算出黑线的准确位置。6.3.4控制策略及控制算法1.转角的控制2.车速的控制3.路径记忆算法6.3.4控制策略及控制算法为保证小车一直沿着黑色引导线快速行驶,系统主要的控制对象是小车的转向和车速。即应使小车在直道上以最快的速度行驶。在进入弯道的过程中尽快减速,且转向要适合弯道的曲率,确保小车平滑地转弯,并在弯道中保持恒速。从弯道进入直道时,小车的舵机要转至中间,速度应该立即得到提升,直至以最大的速度行进。为实现上述控制思想,可以采用不同的控制方法来控制小车的转角和速度。转角的控制为了使舵机迅速地转至期望的角度,先通过前排发射接收光电管检测黑线,当小车处于直道时,最中间的光电管检测到信号,当处于不同曲率的弯道时,前排两侧不同的光电管将检测到信号。所以,根据前排光电管检测到的不同信号,可以判断出小车所处的位置。然后,根据小车的位置再对调整舵机进行相应的调整。转角的控制调整舵机的原则是:小车处于直道时,摆正舵机。小车处于弯道的曲率越大,则舵机转角越大。除此之外,小车还会遇到黑色交叉线的特殊情况,对此,本系统将保持小车原有的方向与速度,使小车不受交叉线的干扰。如果小车转过的弯过大,则可能使前排光电管全部偏离黑色轨迹,从而没有一个光电管检测到黑线,故应使舵机保持原角度,让小车急转驶回正道。同时,将速度适当降低,防止小车冲出轨迹。转角的控制这里采用比例和微分相结合的PD控制方法。(1)比例控制:通过前面提取的position与中心位置相减得到比例控制的偏差量,然后再根据偏差量的大小采用比例系数控制舵机转向。(2)微分控制:通过存储连续20次采样所得到的黑线位置,可以计算出相应的黑线位置变化率,进而根据这个变化率的大小,来调整微分系数,以控制舵机转向。车速的控制因为小车比赛的赛道是未知的,弯道的分布情况也不能确定,小车可能频繁地进出弯道,不停地调整速度来适应不同轨迹。所以,需要对智能车的速度进行闭环控制,使得小车的速度能够频繁地变化,且能在很短的时间内由当前速度转变为期望的转速。基于这几点的考虑,可以考虑利用MC9S12DG128单片机的模糊指令集。路径记忆算法由于传感器看到赛道的长度有限,不能很好地对赛道状况进行预测,因此,如果小车在跑第一圈的时候能够记下赛道全部路径信息,在第二圈的时候则能够根据第一圈的记忆信息辅助控制,在相同条件下将比不使用赛道记忆的智能车更具有优势。路径记忆算法成功实现赛道记忆算法,必须具备以下五个条件赛车必须识别起跑线。赛车需要在第一圈记下正确的赛道信息。正确地滤波。赛车必须拥有足够的存储空间。赛车在第二圈如何应用第一圈记下的信息。起跑线的检测从图6.18的起始线的特点可以看到,在两条黑线之间有大约2cm的白色区域,可以通过识别这个特征信息,来区别起始线和十字交叉线。我们采用一排为五个的红外光电管,中间三个之间的距离为2cm,旁边两个的距离为5cm,如图6.19所示。图6.18起始线尺寸图图6.19光电管排列图赛车如何在第一圈记下正确的赛道信息当起跑线被检测到后,开始对赛道进行记忆。我们采用的是分段式记忆算法,当黑线的位置在中间某个区域内则记为直道,在右面的区域则记为右弯道,在左面的区域则记为左弯道。我们利用编码器记录小车走过的路程,具体做法为:用PCAN1记录编码器的脉冲数,输入到计数器当中,进而采用计数器的溢出中断来对赛道进行定距离记忆,当计数器的脉冲数溢出时,这时计数器申请溢出中断,从而实现对赛道定距离记忆。当第二次检测到起始线时记忆结束。正确的滤波确的滤波对赛道记忆而言是至关重要的,它决定了在第二圈时赛车的运行路线和运行速度,对赛道滤波需要分两种情况,第一种就是在记忆过程中对赛道滤波,由于我们采用的是分段式记忆方法,当某一段记到的脉冲数小于某个数时,这时我们把它归为上一段。第二种就是在第二次检测到起始线后对赛道进行全局滤波,这时我们要从赛道中滤出小S道、大S道和连续弯道。正确的滤波具体做法如下:首先我们必须先找出它们的特征,对于小S道,由于我们采用的是分段式记忆算法,如果当连续几段的脉冲数都很少时,我们可以把这几段看成一个整体,把它从赛道中滤出来,从而实现小S道直冲。当然这个脉冲数的阈值必须是通过大量的测试而得,否则将造成错误。大S道不能像小S道那样直接冲过去,否则小车将冲出跑道。我们必须将连续弯道提取出来,因为在第二圈回忆跑道时,连续弯道最容易出错。赛车必须拥有足够的存储空间由于赛车的RAM空间只有8kb,所以EEPROM必然成为了存储赛道信息的最佳选择。通过编写WriteEEPROM和ReadEEPRROM这两个函数,将EEPROM当作ROM来使用。这样就解决了存储空间不足的问题,而且EEPROM在程序复位和断电后数据不会丢失。赛车在第二圈如何应用第一圈记下的信息根据第一圈记录下来的信息,小车就可以提前预知直道还是弯道。对于直道,小车在道路的前段以常规的速度行驶,以便小车调整车身姿态,中段则以全速行驶,后段则提前减速到一个最佳的速度,为过弯道而做准备。在弯道中,小车会根据第一圈记下来的不同曲率,以设定速度匀速行驶。特别的是,在过小S弯时,可以人为地让小车减小调节舵机的大小,这样小车便能以近似直道冲过去。赛车在第二圈如何应用第一圈记下的信息记忆算法流程图如图6.20所示。图6.20记忆算法流程图思考题1.光电管型智能车的三种排布方式:“一”字形、“八”字形、“W”字形各有何优、缺点?试设计一类更有利于智能车前瞻性和赛道检测精确性的光电管排布方式。2.在智能车的设计过程中,如何有效减少光电管之间的干扰?思考题3.设计一种滤波方案,使光电管型智能车能够在运行时克服外界光线的频繁变化。4.路径记忆算法相对于一般控制算法的优势何在?何种情况下使用路径记忆算法能够显著提高小车行驶的速度?

MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞

弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0

永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):

形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)

MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证

体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇

预防手术部位感染(surgicalsiteinfection,SSI)

手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染

指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:

1.切口浅层有脓性分泌物

2.切口浅层分泌物培养出细菌

3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)

4.由外科医师诊断为切口浅部SSI

注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染

指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:

1.切口深部流出脓液

2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛

3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿

4.外科医师诊断为切口深部感染

注意:感染同时累及切口浅部及深部者,应列为深部感染

二、SSI诊断标准—器官/腔隙感染

指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:

1.放置于器官/腔隙的引流管有脓性引流物

2.器官/腔隙的液体或组织培养有致病菌

3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿

4.外科医师诊断为器官/腔隙感染

★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染

不同种类手术部位的器官/腔隙感染有:

腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染

——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)

(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防

在污染细菌接触宿主手术部位前给药治疗

在污染细菌接触宿主手术部位后给药

防患于未然六、预防SSI干预方法

——抗菌药物的应用129预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法

——抗菌药物的应用130需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用

理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学

手术过程

012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法

——抗菌药物的应用136术后给药,细菌在手术伤口接种的生长动力学无改变

手术过程抗生素血肿血浆六、预防SSI干预方法

——抗菌药物的应用Antibioticsinclot

手术过程

血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法

——抗菌药物的应用138ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法

——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)

5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法

——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好140六、预防SSI干预方法

——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法

——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法

——抗菌药物的应用

手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或

(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;

(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或

(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或

B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法

——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法

——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法

——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法

——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法

——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法

——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法

——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%

脱毛0.6%备皮时间 术前24小时前 >20%

术前24小时内 7.1%

术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%

前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论