



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第20讲:古典概型【课型】复习课【教学目标】1.理解并掌握古典概型的特征2.会用古典概型的概率公式计算概率3.熟悉古典概型的解题步骤【预习清单】【基础知识梳理】1.基本事件有如下特点:(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型的特征:(1)有限性.试验中所有可能出现的基本事件只有有限个;(2)等可能性.每个基本事件出现的可能性相同,称这样的概率模型为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:有限性和等可能性.3.古典概型的概率计算公式:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是eq\f(1,n);如果某个事件A包括的结果有m个,那么事件A的概率P(A)=eq\f(m,n).4.古典概型解题步骤:(1)标记对象(例:记3名男生分别为a,b,c;2名女生分别记为1,2);(2)列总的基本事件及数目n;(3)抽象事件(记“某某某”为事件A);(4)列事件A包含的基本事件及数目m;(5)代入概率公式P(A)=eq\f(m,n).计算;(6)作答。【引导清单】考向一:古典概型概率计算点击量[0,1000](1000,3000](3000,+∞)节数61812例1:某市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在第二季“名师云课”中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计如下:(1)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数;(2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟行剪辑,若点击量超过3000,则不需要剪辑,现从(1)中选出的6节课中任意选出2节课进行剪辑,求剪辑时间为40分钟的概率.【解】(1)根据分层抽样,从36节云课中选出6节课,其中点击量超过3000的节数为eq\f(6,36)×12=2.(2)在(1)中选出的6节课中,点击量在区间[0,1000]内的有1节,点击量在区间(1000,3000]内的有3节,设点击量在区间[0,1000]内的1节课为A1,点击量在区间(1000,3000]内的3节课分别为B1,B2,B3,点击量超过3000的2节课分别为C1,C2.从中选出2节课的方式有A1B1,A1B2,A1B3,A1C1,A1C2,B1B2,B1B3,B1C1,B1C2,B2B3,B2C1,B2C2,B3C1,B3C2,C1C2,共15种,其中剪辑时间为40分钟的情况有A1C1,A1C2,B1B2,B1B3,B2B3,共5种,则剪辑时间为40分钟的概率P=eq\f(5,15)=eq\f(1,3).【训练清单】【变式训练】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【解】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率P(M)=eq\f(5,21).【巩固清单】1.袋中装有6个白球,5个黄球,4个红球,从中任取一球,取到白球的概率为【解析】从15个球中任取一球取到白球的概率P=eq\f(6,15)=eq\f(2,5).2.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为【解析】将2名男同学分别记为x,y,3名女同学分别记为a,b,c.设“选中的2人都是女同学”为事件A,则从5名同学中任选2人参加社区服务的所有可能情况有(x,y),(x,a),(x,b),(x,c),(y,a),(y,b),(y,c),(a,b),(a,c),(b,c),共10种,其中事件A包含的可能情况有(a,b),(a,c),(b,c),共3种,故P(A)=eq\f(3,10)=0.3.3.已知高一年级某班有63名学生,现要选1名学生作为标兵,每名学生被选中是等可能的,若“选出的标兵是女生”的概率是“选出的标兵是男生”的概率的eq\f(10,11),则这个班的男生人数为________.【解析】根据题意,设该班的男生人数为x,则女生人数为63-x,因为每名学生被选中是等可能的,根据古典概型的概率计算公式知,“选出的标兵是女生”的概率是eq\f(63-x,63),“选出的标兵是男生”的概率是eq\f(x,63),故eq\f(63-x,63)=eq\f(10,11)×eq\f(x,63),解得x=33,故这个班的男生人数为33.4.甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为【解析】因为甲、乙两人参加学习小组的所有情况有(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9种,其中两人参加同一个学习小组的情况有(A,A),(B,B),(C,C),共3种,所以两人参加同一个学习小组的概率为eq\f(3,9)=eq\f(1,3)5.某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.【解】(1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个.则所求事件的概率为:P=eq\f(3,15)=eq\f(1,5).(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个,则所求事件的概率为:P=eq\f(2,9).6.随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查了40人,并将调查情况进行整理后制成下表:年龄/岁[15,25)[25,35)[35,45)[45,55)[55,65]频数51010510赞成人数46849(1)完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?(2)若从年龄在[15,25),[45,55)的被调查人员中各随机选取1人进行调查.请写出所有的基本事件,并求选取的2人中恰有1人持不赞成态度的概率.【解】(1)被调查人员年龄的频率分布直方图如图所示.被调查人员中持赞成态度人员的平均年龄eq\o(x,\s\up6(-))=eq\f(4×20+6×30+8×40+4×50+9×60,4+6+8+4+9)≈42.6(岁).(2)设年龄在[15,25)的被调查人员中持赞成态度的4人分别为A1,A2,A3,A4,持不赞成态度的1人为a,设年龄在[45,55)的被调查人员中持赞成态度的4人分别为B1,B2,B3,B4,持不赞成态度的1人为b.基本事件为(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A1,b),(A2,B1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工现场安全试题及答案
- 文言字词测试题及答案
- 汽修类单招试题及答案
- 信号与系统试题及答案
- 电缆证考试题及答案
- 2024年纺织品设计师证书的应试方法试题及答案
- 国际美术设计师考试中的备考方法与技巧试题及答案
- 督灸相关试题及答案详解
- 助理广告师广告设计原则试题及答案
- 2024年美术设计创新实践试题及答案
- 2025至2030中国二亚砜(dmso)市场深度调研及投资建议研究报告
- 铲车装载机知识培训课件
- 2025年辽宁省葫芦岛市绥中县中考一模语文试题含答案
- 家政经理培训课件
- 2024-2025学年高一下学期期中考试化学试卷
- 四川省南充市高级中学2024-2025学年高二下学期期中考试 化学(含答案)
- 国际教育规划合同8篇
- 浙江省宁波市三锋教研联盟2024-2025学年高一下学期4月期中化学试卷(含答案)
- 整装定制合同协议
- 产品研发项目管理制度
- 2025年全国中学生汉字听写大会比赛题库及解析(共八套)
评论
0/150
提交评论