陕西省汉中市南郑中学2023年数学高二下期末检测试题含解析_第1页
陕西省汉中市南郑中学2023年数学高二下期末检测试题含解析_第2页
陕西省汉中市南郑中学2023年数学高二下期末检测试题含解析_第3页
陕西省汉中市南郑中学2023年数学高二下期末检测试题含解析_第4页
陕西省汉中市南郑中学2023年数学高二下期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有A.5种 B.10种C.20种 D.120种2.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.33.抛物线上的点到直线的最短距离为()A. B. C. D.4.设x,y满足约束条件,则目标函数的取值范围为()A. B. C. D.5.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则A.2 B.4 C.6 D.86.已知函数fx在R上可导,且fx=A.-2 B.2 C.4 D.-47.在一次抽奖活动中,一个箱子里有编号为至的十个号码球(球的大小、质地完全相同,但编号不同),里面有个号码为中奖号码,若从中任意取出个小球,其中恰有个中奖号码的概率为,那么这个小球中,中奖号码小球的个数为A. B. C. D.8.设全集,集合,,则()A. B. C. D.9.从5个中国人、4个美国人、3个日本人中各选一人的选法有()A.12种 B.24种 C.48种 D.60种10.已知,,,则的大小关系为()A. B.C. D.11.下列导数运算正确的是()A. B.C. D.12.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立.现已知当时该命题不成立,那么可推得()A.当时该命题不成立 B.当时该命题成立C.当时该命题不成立 D.当时该命题成立二、填空题:本题共4小题,每小题5分,共20分。13.若,,,则_____.14.已知中角满足且,则__________.15.已知一组数据,,,的线性回归方程为,则_______.16.已知椭圆的左、右焦点分别为,为椭圆上一点,且,若关于平分线的对称点在椭圆上,则该椭圆的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,.(1)证明:.(2)证明:.18.(12分)某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:每分钟跳绳个数得分1617181920年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.附:若随机变量服从正态分布,则,,.19.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知,,b=2.(1)求c;(2)设D为BC边上一点,且,求△ABD的面积.20.(12分)已知函数f(x)=e(Ⅰ)求函数f(x)极值;(Ⅱ)若对任意x>0,f(x)>12a21.(12分)设函数.(1)当时,求函数的值域;(2)若,求实数的取值范围.22.(10分)设函数.(1)若对于一切实数,恒成立,求实数的取值范围;(2)若对于,恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据题意,可看做五个位置排列五个数,把“金、木、土、水、火”用“1,2,3,4,5”代替.根据相克原理,1不与2,5相邻,2不与1,3相邻,依次类推,用分布计数原理写出符合条件的情况.【详解】把“金、木、土、水、火”用“1,2,3,4,5”代替.1不与2,5相邻,2不与1,3相邻,所以以“1”开头的排法只有“1,3,5,2,4”或“1,4,2,5,3”两种,同理以其他数开头的排法都是2种,所以共有种.选B.【点睛】本题考查分步计数原理的应用,考查抽象问题具体化,注重考查学生的思维能力,属于中档题.2、C【解析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【点睛】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.3、B【解析】分析:设抛物线上点,由点到直线距离公式,得点A到直线的距离,由二次函数的性质,可求最小距离.详解:设抛物线上的任意一点,由抛物线的性质点A到直线的距离易得由二次函数的性质可知,当时,最小距离.故选B.点睛:本题考查抛物线的基本性质,点到直线距离公式,考查学生转化能力和计算能力.4、A【解析】

作出可行域,将问题转化为可行域中的点与点的斜率问题,结合图形可得答案.【详解】画出满足条件得平面区域,如图所示:目标函数的几何意义为区域内的点与的斜率,过与时斜率最小,过与时斜率最大,故选:A.【点睛】本题考查了利用线性规划求分式型目标函数取值范围问题,解题关键是转化为斜率,难度较易.5、B【解析】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得①,又,由余弦定理②,由①2-②得,故选B.6、A【解析】

求导后代入x=1可得关于f'1【详解】由fx=令x=1,则f'1本题正确选项:A【点睛】本题考查导数值的求解,关键是能够根据导数运算法则得到导函数的解析式,属于基础题.7、C【解析】

利用古典概型列出恰有1个中奖号码的概率的方程,解方程即可.【详解】依题意,从10个小球中任意取出1个小球,其中恰有1个中奖号码的概率为,所以,所以n(10﹣n)(9﹣n)(8﹣n)=180,(n∈N*)解得n=1.故选:C.【点睛】本题考查了古典概型的概率公式的应用,考查了计数原理及组合式公式的运算,属于中档题.8、B【解析】

求得,即可求得,再求得,利用交集运算得解.【详解】由得:或,所以,所以由可得:或所以所以故选:B【点睛】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.9、D【解析】

直接根据乘法原理得到答案.【详解】根据乘法原理,一共有种选法.故选:.【点睛】本题考查了乘法原理,属于简单题.10、A【解析】

利用等中间值区分各个数值的大小.【详解】,,,故,所以.故选A.【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.11、B【解析】

由判断;由判断;由判断判断;由判断.【详解】根据题意,依次分析选项,对于,,错误;对于,,正确;对于,,错误;对于,,错误;故选B.【点睛】本题主要考查指数函数、对数函数与幂函数的求导公式以及导数乘法的运算法则,意在考查对基本公式与基本运算掌握的熟练程度,属于中档题.12、A【解析】分析:利用互为逆否的两个命题同真同假的原来,当对不成立时,则对也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立,命题对不成立时,则对也不成立,否则当时命题成立,由已知必推得也成立,与当时命题不成立矛盾,故选A.点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.15【解析】由题意可得:,则:,.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.14、【解析】分析:先化简得到,再化简得到.详解:因为,所以1-,所以,因为,所以,所以A+B=.,所以,因为sinA>0,所以.故答案为.点睛:本题主要考查三角化简和诱导公式,意在考查学生对这些知识的掌握水平和基本的计算能力.15、【解析】

样本数据的回方程必经过样本点的中心,该组数据的中心为,代入回归方程,得到关于的方程.【详解】设这组数据的中心为,,,,整理得:.【点睛】本题考查回归直线方程经过样本点中心,考查统计中简单的数据处理能力.16、【解析】

根据椭圆的定义与几何性质判断为正三角形,且轴,设,可得,从而可得结果.【详解】因为关于的对称点在椭圆上,则,,为正三角形,,又,所以轴,设,则,即,故答案为.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)不等式左右都大于0,两边同时平方,整理即要证明,再平方,且,,即得证;(2)证明即可,提公因式整理得证。【详解】证明:(1)欲证明,只需证明,即证,两边平方,得,因为,所以显然成立,得证.(2)因为,所以.【点睛】本题考查证明不等式,(1)用两边同时平方的方法,(2)用做差法来证明,注意(1)可以平方的条件是不等式两边都大于零。18、(1);(2)(i)1683;(ii).【解析】

(1)根据频率分布直方图得到16分,17分,18分的人数,再根据古典概率的计算公式求解.(2)根据离散型随机变量的分布列和数学期望与方差的公式进行求解.【详解】(1)设“两人得分之和小于35分”为事件,则事件包括以下四种情况:①两人得分均为16分;②两人中一人16分,一人17分;③两人中一人16分,一人18分;④两人均17分.由频率分布直方图可得,得16分的有6人,得17分的有12人,得18分的有18人,则由古典概型的概率计算公式可得.所以两人得分之和小于35的概率为.(2)由频率分布直方图可得样本数据的平均数的估计值为:(个).又由,得标准差,所以高二年级全体学生的跳绳个数近似服从正态分布.(i)因为,所以,故高二年级一分钟跳绳个数超过164个的人数估计为(人).(ii)由正态分布可得,全年级任取一人,其每分钟跳绳个数在179以上的概率为,所以,的所有可能的取值为0,1,2,3.所以,,,,故的分布列为:0123所以,.【点睛】本题考查了频率分布直方图的应用问题、正态分布的应用问题,也考查了离散型随机变量的分布列与期望的计算问题.19、(1)c=4(2)【解析】

(1)根据同角三角函数的基本关系式求得,由此求得的大小,利用余弦定理列方程,解方程求得.(2)先求得三角形和三角形的面积比,再由三角形的面积,求得三角形的面积.【详解】(1)由已知可得,所以.在△ABC中,由余弦定理得,即,解得c=-6(舍去),c=4.(2)由题设可得,所以.故△ABD与△ACD面积的比值为.又△ABC的面积为,所以△ABD的面积为.【点睛】本小题主要考查余弦定理解三角形,考查三角形面积的计算,考查同角三角函数的基本关系式,属于基础题.20、(1)f(x)极小值=1,无极大值;(2)【解析】

(Ⅰ)先对函数求导,利用导数的方法确定函数单调性,进而可得出极值;(Ⅱ)先设g(x)=ex-x-12ax2-1,对函数【详解】解:(Ⅰ)令f'(x)=x(-∞,0)0(0,+∞)f-0+f(x)↓极小值↑∴f(x)(II)对任意x>0,f(x)>12a设g(x)=ex-x-①当a≤0时,g'(x)单调递增,g'②当0<a≤1时,令h(x)=g'(x),h'(x)=e③当a>1时,当0<x<lna时,h'(x)=ex-a<0综上,a的取值范围为(-∞,1].【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值等,属于常考题型.21、(1);(2)【解析】

(1)当时,,求导,可知函数在上单调递增,即可求出的值域;(2)根据已知可得,对分类讨论:当时,不等式恒成立;当时,,令,只需即可,求导可得,令,则,即可得,从而可得,从而可得.【详解】(1)当时,,所以所以在上单调递增,最小值为,最大值为,所以的值域为.(2)由,得,①当时,不等式恒成立,此时;②当时,,令,则,令,则,所以在上单调递增,所以,所以,所以在上单调递增,所以,所以综上可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论