新疆阿克苏市沙雅县第二中学2022-2023学年数学高二第二学期期末达标测试试题含解析_第1页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高二第二学期期末达标测试试题含解析_第2页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高二第二学期期末达标测试试题含解析_第3页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高二第二学期期末达标测试试题含解析_第4页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若α是第一象限角,则sinα+cosα的值与1的大小关系是()A.sinα+cosα>1 B.sinα+cosα=1 C.sinα+cosα<1 D.不能确定2.已知向量与向量的模均为2,若,则它们的夹角是()A. B. C. D.3.函数的图像大致为()A. B.C. D.4.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C. D.5.在中,角,,所对的边分别为,,,且,,,,则()A.2 B. C. D.46.以,为端点的线段的垂直平分线方程是A. B. C. D.7.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.8.在中,角A,B,C的对边分别是a,b,c,若,,,则()A. B. C. D.9.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}10.已知复数(是虚数单位),则复数的共轭复数()A. B. C. D.11.已知函数,则的值是()A. B. C. D.12.下列命题:①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联②若二项式的展开式中所有项的系数之和为,则展开式中的系数是③随机变量服从正态分布,则④若正数满足,则的最小值为其中正确命题的序号为()A.①②③ B.①③④ C.②④ D.③④二、填空题:本题共4小题,每小题5分,共20分。13.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.14.若命题“,使得成立”是假命题,则实数的取值范围是_______.15.已知一个总体为:、、、、,且总体平均数是,则这个总体的方差是______.16.某保险公司新开设了一项保险业务.规定该份保单任一年内如果事件发生,则该公司要赔偿元,假若在一年内发生的概率为,为保证公司收益不低于的,公司应要求该份保单的顾客缴纳的保险金最少为____________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为,(为参数),为曲线上的动点,动点满足(且),点的轨迹为曲线.(1)求曲线的方程,并说明是什么曲线;(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中,点的极坐标为,射线与的异于极点的交点为,已知面积的最大值为,求的值.18.(12分)已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.19.(12分)已知函数,.(1)当时,求的最小值;(2)当时,若存在,使得对任意的恒成立,求的取值范围.20.(12分)已知点,动点满足条件.记动点的轨迹为.(1)求的方程;(2)若是上的不同两点,是坐标原点,求的最小值.21.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示,支持“延迟退休年龄政策”的人数与年龄的统计结果如表:年龄(岁)支持“延迟退休年龄政策”人数155152817(I)由以上统计数据填写下面的列联表;年龄低于45岁的人数年龄不低于45岁的人数总计支持不支持总计(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.0.1000.0500.0100.0012.7063.8416.63510.828参考公式:22.(10分)某校高二年级成立了垃圾分类宣传志愿者小组,有7名男同学,3名女同学,在这10名学生中,1班和2班各有两名同学,3班至8班各有一名同学,现从这10名同学中随机选取3名同学,利用节假日到街道进行垃圾分类宣传活动(每位同学被选到的可能性相同)(1)求选出的3名同学是来自不同班级的概率;(2)设为选出的3名同学中女同学的人数,求随机变量的分布列及数学期望

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|,再由三角形任意两边之和大于第三边,得出结论.解:如图所示:设角α的终边为OP,P是角α的终边与单位圆的交点,PM垂直于x轴,M为垂足,则由任意角的三角函数的定义,可得sinα=MP=|MP|,cosα=OM=|OM|.△OPM中,∵|MP|+|OM|>|OP|=1,∴sinα+cosα>1,故选A.考点:三角函数线.2、A【解析】

由题意结合数量积的运算法则可得,据此确定其夹角即可.【详解】∵,∴,∴,故选A.【点睛】本题主要考查向量夹角的计算,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.3、D【解析】

利用函数解析式求得,结合选项中的函数图象,利用排除法即可得结果.【详解】因为函数,所以,选项中的函数图象都不符合,可排除选项,故选D.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4、B【解析】

解析:考察均值不等式,整理得即,又,5、C【解析】

先利用正弦定理解出c,再利用的余弦定理解出b【详解】所以【点睛】本题考查正余弦定理的简单应用,属于基础题.6、B【解析】

求出的中点坐标,求出的垂直平分线的斜率,然后求出垂直平分线方程.【详解】因为,,所以的中点坐标,直线的斜率为,所以的中垂线的斜率为:,所以以,为端点的线段的垂直平分线方程是,即.故选:B【点睛】本题考查直线的一般式方程与直线的垂直关系,直线方程的求法,考查计算能力.7、B【解析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.8、A【解析】

结合特殊角的正弦值,运用正弦定理求解.【详解】由正弦定理可知:,故本题选A.【点睛】本题考查了正弦定理,考查了数学运算能力.9、B【解析】

依题意,由于,所以.当时,,当时,,故的值域为.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.10、B【解析】分析:利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.详解:,.故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11、C【解析】

首先计算出,再把的值带入计算即可.【详解】根据题意得,所以,所以选择C【点睛】本题主要考查了分段函数求值的问题,属于基础题.12、B【解析】

根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.【详解】①,则有的把握确认这两类指标间有关联,①正确;②令,则所有项的系数和为:,解得:则其展开式通项为:当,即时,可得系数为:,②错误;③由正态分布可知其正态分布曲线对称轴为,③正确;④,,(当且仅当,即时取等号),④正确.本题正确选项:【点睛】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.14、【解析】

根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号综上所述:本题正确结果:【点睛】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.15、【解析】

利用总体平均数为求出实数的值,然后利用方差公式可求出总体的方差.【详解】由于该总体的平均数为,则,解得.因此,这个总体的方差为.故答案为:.【点睛】本题考查方差的计算,利用平均数和方差公式进行计算是解题的关键,考查运算求解能力,属于基础题.16、【解析】

用表示收益额,设顾客缴纳保险费为元,则的取值为和,由题意可计算出的期望.【详解】设顾客缴纳的保险金为元,用表示收益额,设顾客缴纳保险费为元,则的取值为和,,则,,的最小值为.故答案为:.【点睛】本题考查利用离散型随机变量的期望解决实际问题,解题关键是正确理解题意与期望的意义.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)2【解析】分析:(1)设,,根据,推出,代入到,消去参数即可求得曲线的方程及其表示的轨迹;(2)法1:先求出点的直角坐标,再求出直线的普通方程,再根据题设条件设点坐标为,然后根据两点之间距离公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值;法2:将,代入,即可求得,再根据三角形面积公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值.详解:(1)设,,由得.∴∵在上∴即(为参数),消去参数得.∴曲线是以为圆心,以为半径的圆.(2)法1:点的直角坐标为.∴直线的普通方程为,即.设点坐标为,则点到直线的距离.∴当时,∴的最大值为∴.法2:将,代入并整理得:,令得.∴∴∴当时,取得最大值,依题意,∴.点睛:本题主要考查把参数方程转化为普通方程,在引进参数和消去参数的过程中,要注意保持范围的一致性;在参数方求最值问题中,将动点的参数坐标,根据题设条件列出三角函数式,借助于三角函数的图象与性质,即可求最值,注意求最值时,取得的条件能否成立.18、(1);(2)直线的方程为,的面积为.【解析】

求得圆的圆心和半径.(1)当三点均不重合时,根据圆的几何性质可知,是定点,所以的轨迹是以为直径的圆(除两点),根据圆的圆心和半径求得的轨迹方程.当三点有重合的情形时,的坐标满足上述求得的的轨迹方程.综上可得的轨迹方程.(2)根据圆的几何性质(垂径定理),求得直线的斜率,进而求得直线的方程.根据等腰三角形的几何性质求得的面积.【详解】圆,故圆心为,半径为.(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),线段中点为,,故的轨迹方程为(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以的斜率为,故的方程为,即.又易得|OM|=|OP|=,点O到的距离为,,所以△POM的面积为.【点睛】本小题主要考查动点轨迹方程的求法,考查圆的几何性质,考查等腰三角形面积的计算,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.19、(1)见解析;(2)【解析】

(1)求出f(x)的定义域,求导数f′(x),得其极值点,按照极值点a在[1,e2]的左侧、内部、右侧三种情况进行讨论,可得其最小值;(2)存在x1∈[e,e2],使得对任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,由(1)知f(x)在[e,e2]上递增,可得f(x)min,利用导数可判断g(x)在[﹣2,0]上的单调性,可得g(x)min,由f(x)min<g(x)min,可求得a的范围;【详解】(1)f(x)的定义域为(0,+∞),f′(x)(a∈R),当a≤1时,x∈[1,e2],f′(x)≥0,f(x)为增函数,所以f(x)min=f(1)=1﹣a;当1<a<e2时,x∈[1,a],f′(x)≤0,f(x)为减函数,x∈[a,e2],f′(x)≥0,f(x)为增函数,所以f(x)min=f(a)=a﹣(a+1)lna﹣1;当a≥e2时,x∈[1,e2],f′(x)≤0,f(x)为减函数,所以f(x)min=f(e2)=e2﹣2(a+1);综上,当a≤1时,f(x)min=1﹣a;当1<a<e2时,f(x)min=a﹣(a+1)lna﹣1;当a≥e2时,f(x)min=e2﹣2(a+1);(2)存在x1∈[e,e2],使得对任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,当a<1时,由(1)可知,x∈[e,e2],f(x)为增函数,∴f(x1)min=f(e)=e﹣(a+1)g′(x)=x+ex﹣xex﹣ex=x(1﹣ex),当x∈[﹣2,0]时g′(x)≤0,g(x)为减函数,g(x)min=g(0)=1,∴e﹣(a+1)1,a,∴a∈(,1).【点睛】本题考查利用导数研究函数的单调性及求闭区间上函数的最值,考查分类讨论思想,考查了分析解决问题的能力,将恒成立问题转化为函数的最值是常用方法,属于较难题.20、(1)(x>0)(2)的最小值为2【解析】本试题主要是根据定义求解双曲线的方程,以及直线与双曲线的位置关系的综合运用.(1)根据题意,点P的轨迹

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论