光纤通信仿真实验_第1页
光纤通信仿真实验_第2页
光纤通信仿真实验_第3页
光纤通信仿真实验_第4页
光纤通信仿真实验_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验一光通讯系统WDM系统设计一.实验目的1.了解光通讯系统WDM系统的组成;2.学会掌握使用optisystem仿真软件;二.实验原理(1)WDM系统的基本构成WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。(2)双纤单向WDM系统的组成以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。1.光发射机光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。2.光中继放大器经过长距离(80~120km)光纤传输后,需要对光信号进行光中继放大,目前使用的光放大器多数为掺铒光纤光放大器(EDFA)。在WDM系统中必须采用增益平坦技术,使EDFA对不同波长的光信号具有相同的放大增益,并保证光信道的增益竞争不影响传输性能。3.光接收机在接收端,光前置放大器(PA)放大经传输而衰减的主信道信号,采用分波器从主信道光信号中分出特定波长的光信道,接收机不但要满足对光信号灵敏度、过载功率等参数的要求,还要能承受一定光噪声的信号,要有足够的电带宽性能。4.光监控信道光监控信道的主要功能是监控系统内各信道的传输情况。在发送端插入本节点产生的波长为λs(1550nm)的光监控信号,与主信道的光信号合波输出。在接收端,将接收到的光信号分波,分别输出λs(1550nm)波长的光监控信号和业务信道光信号。帧同步字节、公务字节和网管使用的开销字节都是通过光监控信道来传递的。5.网络管理系统网络管理系统通过光监控信道传送开销字节到其他节点或接收来自其他节点的开销字节对WDM系统进行管理,实现配置管理、故障管理、性能管理、安全管理等功能。(3)OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。全面的图形用户界面控制光子器件设计、器件模型和演示。巨大的有源和无源器件的库包括实际的、波长相关的参数。参数的扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。因为是为了符合系统设计者、光通讯工程师、研究人员和学术界的要求而设计的,OptiSystem满足了急速发展的光子市场对一个强有力而易于使用的光系统设计工具的需求。优点•投资风险大幅度降低,快速投入市场•快速、低成本的原型设计•系统性能的全面认识该环形网络中采用Mach-Zehnder(马赫-曾德尔)外调制其对CWLaser激光器光源进行调制,分别产生中心频率为1551.0nm和1551.8nm波长的光载波。这两种信号通过ADM从不同节点插入后在同一根光纤中传输,如图2所示。系统眼图为了综合评价整个系统的传输性能[3],在节点1与3之间以及节点2与4之间接入了BER,通过眼图分析此通信系统的Q因子及误码率。节点1与3之间的眼图如图5所示,节点2与4之间的眼图如图6所示。图5节点1与3之间(1551.0nm信道)的眼图图6节点2与4之间(1551.8nm信道)的眼图在光通信系统中,特别是WDM系统中,BER是衡量光路性能的重要指标之一。通常,作为一个品质因数,采用信号的Q因子来衡量系统传输的质量,并由它来表征系统的BER,Q因子被定义为在最佳判决点信号与噪声的比值[4]。从眼图上可以观察出码间串扰的强弱。由眼图可知,Q因子随眼图的张开程度作如下变化:越靠近眼图张开最大处,其Q因子越大,对应的BER就越小。图4、图5先示,在眼图张开最大时刻其Q因子分别达到了6.26054、6.2421。因为当Q=6时,BER约为10-9;当Q=7时,对应的BER约为10-12。因此该系统的性能不算太差。六.实验感想通过对WDM城域环形通信系统的仿真,得到了较为理想的系统眼图和Q因子曲线,从而验证了WDM系统的正确性和设计方案的可行性。WDM系统提高了信道的利用率,极大地影响了整个通信网络的性能,因此波分复用的研发具有极其可贵的应用价值。实验二EDFA+WDM通信系统实验一.实验目的1.

了解掺铒光纤放大器的主要性能。

2.

使用OptiSystem模拟仿真EDFA+WDM系统的各项性能参数,并进行分析。

二.实验原理EDFA是英文“Erbium-dopedOpticalFiberAmplifer”的缩写,意即掺铒光纤放大器,是一种对信号光放大的一种有源光器件。掺饵光纤放大器的诞生是光纤通信领域革命性的突破,它使长距离、大容量、高速率的光纤通信成为可能,是DWDM系统及未来高速系统、全光网络不可缺少的重要器件。其研发和应用,对光纤通信的发展有着重要的意义。在我国,武汉邮科院研制开发的EDFA系列产品,是目前唯一的国产商用化产品,并已大量应用到工程中。三.实验步骤八组外部调变激光、WDMMux8X1(八对一的分波多任务器)、Mach-zehndermodulator马赫轮德尔调变器光纤、掺铒光纤放大器EDFA、控制循环LOOPcontrol、WDMdemux1x8一对八的分波解多任务器,使用光时域观测器和分波多任务分析仪获取每个信道的信号频谱和总功率。步骤:从组件库中选择Default>OpticalFibersLibrary把OpticalFiber拖曳到Mainlayout从组件库中选择Default>AmplifiersLibrary>Optical>EDFA把EDFAIdeal拖曳到Mainlayout把EDFA参数中的OpticalMode改成PowerControl把OpticalFiber输出端和EDFAIdeal输入端相连从组件库中选择Default>Toolslibrary把Loopcontrol拖曳到Mainlayout把WDMMux8X1输出端连到Loopcontrol输入端把EDFAIdeal输出端连到Loopcontrol第二个输入端,并把OpticalFiber输出端连到EDFAIdeal输入端从组件库中选择Default>OpticalFibersLibrary把OpticalFiber拖曳到Mainlayout从组件库中选择Default>WDMMultiplexersLibrary>Demultiplexers把WDMDeMux8X1拖曳到Mainlayout把Loopcontrol输出端连到WDMDeMux8X1输入端从组件库中选择Default>VisualizerLibrary>Optical把Opticalspectrumanalyzer拖曳到Mainlayout把Opticaltimedomainvisualizer拖曳到Mainlayout把WDMAnalyzer拖曳到Mainlayout把每个观测的输入端连到WDMDeMux8X1的第一个输出端执行模拟:点击calculate按钮,点击Run按钮双击观测器来观看结果和图表四.实验内容OptiSystem用于EDFA+WDM设计QFactor图如下:BERPattern图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论