




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省新乡市市第二中学2022-2023学年高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.为调查哈市高中三年级男生的身高情况,选取了人作为样本,右图是此次调查中的某一项流程图,若其输出的结果是,则身高在以下的频率为
(
)
参考答案:A2.用数学归纳法证明,则从k到k+1时,左边所要添加的项是(
).A. B.C. D.参考答案:D分析:根据式子的结构特征,求出当n=k时,等式的左边,再求出n=k+1时,等式的左边,比较可得所求.详解:当n=k时,等式的左边为,当n=k+1时,等式的左边为,故从“n=k到n=k+1”,左边所要添加的项是,故选D.点睛:本题考查用数学归纳法证明等式,注意式子的结构特征,以及从n=k到n=k+1项的变化.3.等比数列{an}前n项和Sn中,S4=1,S8=3,则a17+a18+a19+a20=()A.20 B.14 C.16 D.18参考答案:C【考点】等比数列的前n项和.【分析】设等比数列{an}的公比是q,由题意和等比数列的前n项和列出方程组,由等比数列的通项公式化简后求出q的值,再表示所求的式子求出答案.【解答】解:设等比数列{an}的公比是q,∵S4=1,S8=3,∴,两式相除得q4=2,∴a17+a18+a19+a20=(a1+a2+a3+a4)q16=16,故选C.4.若数列,,,…,,…是首项为,公比为的等比数列,则为(). (A)
(B)
(C)
(D)参考答案:C略5.(5分)(2014秋?郑州期末)等差数列{an}的前n项和为Sn,且S3=6,a3=0,则公差d等于()A.﹣1B.1C.2D.﹣2参考答案:D【考点】:等差数列的前n项和.【专题】:等差数列与等比数列.【分析】:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解:∵等差数列{an}的前n项和为Sn,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D【点评】:本题考查等差数列的求和公式和通项公式,属基础题.6.若集合,集合,则M∩N=(
)A. B. C. D.参考答案:D由题意得,选D.
7.已知等差数列{an}的前n项和为Sn且满足S17>0,S18<0,则中最大的项为(
)A. B. C. D.参考答案:D【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】由题意可得a9>0,a10<0,由此可知>0,>0,…,<0,<0,…,<0,即可得出答案.【解答】解:∵等差数列{an}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0
∴a10+a9<0,a9>0,∴a10<0,∴等差数列{an}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S1,S2,…,S17为正,S18,S19,…为负,∴>0,>0,…,<0,<0,…,<0,又∵S1<S2<…<S9,a1>a2>…>a9,∴中最大的项为故选D【点评】本题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,属中档题.8.如图为一平面图形的直观图,则此平面图形可能是选项中的(
)
参考答案:C略9.已知直线y=2(x﹣1)与抛物线C:y2=4x交于A,B两点,点M(﹣1,m),若?=0,则m=()A. B. C. D.0参考答案:B【考点】直线与圆锥曲线的关系.【分析】直接利用直线方程与抛物线方程联立方程组求出AB坐标,通过数量积求解m即可.【解答】解:由题意可得:,8x2﹣20x+8=0,解得x=2或x=,则A(2,2)、B(,).点M(﹣1,m),若?=0,可得(3,2m)(,﹣)=0.化简2m2﹣2m+1=0,解得m=.故选:B.10.方程上有解,则的取值范围是(
)A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知,命题“若,则”的否命题是______参考答案:若则
略12.点P是椭圆上的一点,F1、F2是焦点,且∠F1PF2=600,则F1PF2的面积是
。参考答案:13.在如图所示的流程图中,若f(x)=2x,g(x)=x3,则h(2)的值为________.
参考答案:814.已知x,y满足,则的最大值为
.参考答案:1415.已知数列{an}的前n项和,则_______.参考答案:7【分析】利用求解.【详解】由题得.故答案为:7【点睛】本题主要考查数列项和公式,意在考查学生对该知识的理解掌握水平和分析推理能力.16.平面直角坐标系内的格点(横、纵坐标都是整数的点)到直线6x+8y=15的最近距离是
。参考答案:;17.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为______
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=xex.(I)求f(x)的单调区间与极值;(II)是否存在实数a使得对于任意的x1,x2∈(a,+∞),且x1<x2,恒有成立?若存在,求a的范围,若不存在,说明理由.参考答案:【考点】利用导数研究函数的极值;函数恒成立问题;利用导数研究函数的单调性.【分析】(I)利用函数的求导公式求出函数的导数,根据导数求函数的单调性和极值.(II)构造函数g(x)=[f(x)﹣f(a)]/(x﹣a)=(xex﹣aea)/(x﹣a),x>a,求出函数导数,判断函数导函数的值与0的关系,根据导函数的单调性,求a的取值范围.【解答】解:(I)由f′(x)=ex(x+1)=0,得x=﹣1;当变化时的变化情况如下表:可知f(x)的单调递减区间为(﹣∞,﹣1),递增区间为(﹣1,+∞),f(x)有极小值为f(﹣1)=﹣,但没有极大值.(II)令g(x)=[f(x)﹣f(a)]/(x﹣a)=(xex﹣aea)/(x﹣a),x>a,则[f(x2)﹣f(a)]/(x2﹣a)>[f(x1)﹣f(a)]/(x1﹣a)恒成立,即g(x)在(a,+∞)内单调递增这只需g′(x)>0.而g′(x)=[ex(x2﹣ax﹣a)+aea]/(x﹣a)2记h(x)=ex(x2﹣ax﹣a)+aea,则h′(x)=ex[x2+(2﹣a)x﹣2a]=ex(x+2)(x﹣a)故当a≥﹣2,且x>a时,h′(x)>0,h(x)在[a,+∞)上单调递增.故h(x)>h(a)=0,从而g′(x)>0,不等式(*)恒成立另一方面,当a<﹣2,且a<x<﹣2时,h′(x)<0,h(x)在[a,﹣2]上单调递减又h(a)=0,所以h(x)<0,即g′(x)<0,g(x)在(a,﹣2)上单调递减.从而存在x1x2,a<x1<x2<﹣2,使得g(x2)<g(x1)∴a存在,其取值范围为[﹣2,+∞)19.已知中心是原点、焦点在y轴上的椭圆C长轴长为4,且椭圆C过点P(1,),(1)求此椭圆的方程;(2)过点P作倾斜角互补的两条直线PA、PB,分别交椭圆C于A、B两点.求直线AB的斜率.参考答案:【考点】椭圆的简单性质.【专题】转化思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】(1)由题意设椭圆的标准方程为:=1(a>b>0),可得,解出即可得出;(2)设A(x1,y1),B(x2,y2),设PA的方程为y﹣=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2kx+﹣2=0,显然1与x1是这个方程的两解,可得x1,y1,用﹣k代替x1,y1中的k,得x2,y2.再利用斜率计算公式即可得出.【解答】解:(1)由题意设椭圆的标准方程为:=1(a>b>0),可得,解得a=2,b2=2=c2.设此椭圆的方程为:.(2)设A(x1,y1),B(x2,y2),设PA的方程为y﹣=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2kx+﹣2=0,显然1与x1是这个方程的两解,∴x1=,y1=,用﹣k代替x1,y1中的k,得x2=,.∴=.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、斜率计算公式,考查了推理能力与计算能力,属于中档题.20.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m﹣2)x+1=0无实根,若“p或q”真“p且q”为假,求m的取值范围.参考答案:【考点】命题的真假判断与应用.【分析】若“p或q”真“p且q”为假,命题p,q应一真一假,分类讨论,可得m的取值范围.【解答】解:若方程x2+mx+1=0有两个不等的负根,则解得m>2,若方程4x2+4(m﹣2)x+1=0无实根,则△=16(m﹣2)2﹣16<0,解得:1<m<3∵“p或q”真“p且q”,因此,命题p,q应一真一假,∴或,解得:m∈(1,2]∪[3,+∞).21.(本题满分12分)在中,内角所对边分别为.求证:参考答案:22.已知-<x<0,sinx+cosx=,求:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三农领域农民增收致富途径研究
- 利用遥感技术提升农业种植管理的合作协议
- 商业合作协议及项目推进计划表集
- 扶贫知识培训心得体会
- 2025年四川省内江市大学英语6级大学英语六级预测试题含答案
- 家庭农场与农产品加工合作协议
- 农业信息化建设与社区服务合作协议
- 农村农业合作社土地使用协议
- 2025年土地拍卖行业当前市场规模及未来五到十年发展趋势报告
- Unit 5 She Helps Me a Lot 练习题(含答案)教科版四年级上册
- 2023年全国保密知识竞赛全套复习题库及答案(共460道题)
- (推荐下载)家族性结肠息肉病教学课件
- 水生产企业(自来水公司)安全生产责任制(含安全手册)
- 《材料成型装备及自动化》课程大纲
- 临时用电JSA分析表
- 建设工程 施工档案数字化方案
- 如何提高护士对患者病情掌握的知晓率
- 议论文阅读训练 (针对初一学生)附答案
- 固定式压力容器年度检查报告
- 塑胶模具术语中英文对照1
- 浅谈南京图书馆新馆空调冷热源方案的选择
评论
0/150
提交评论