版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章末整合章末整合1高中数学第三章函数的概念与性质章末整合ppt课件新人教A版必修2专题一专题二专题三专题一
求函数的值域例1求下列函数的值域:专题一专题二专题三专题一求函数的值域3专题一专题二专题三专题一专题二专题三4专题一专题二专题三(3)(转化为关于x的二次方程,然后利用判别式求值域)已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.(y-2)x2+2(y-2)x+3y+7=0,当y≠2时,将上式视为关于x的一元二次方程.∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.专题一专题二专题三(3)(转化为关于x的二次方程,然后利用判5专题一专题二专题三方法技巧
求函数值域的方法(1)与二次函数有关的函数,可用配方法(注意定义域);用判别式法求值域,但要注意以下三个问题:一是检验二次项系数为零时,方程是否有解,若无解或使函数无意义,都应从值域中去掉该值;二是闭区间的边界值也要考查达到该值的x是否存在;三是分子分母必须为既约分式.专题一专题二专题三方法技巧求函数值域的方法6专题一专题二专题三专题一专题二专题三7专题一专题二专题三专题二
利用函数单调性求函数的最值例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.(1)讨论函数f(x)的奇偶性;(2)求f(x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此时函数f(x)既不是奇函数,也不是偶函数.专题一专题二专题三专题二利用函数单调性求函数的最值8专题一专题二专题三专题一专题二专题三9专题一专题二专题三方法技巧
解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.专题一专题二专题三方法技巧解含参数问题的基本思想是分类讨论10专题一专题二专题三变式训练2已知函数f(x)=x2-2x+3在[0,a](a>0)上最大值为3,最小值为2,求实数a的取值范围.解:f(x)=x2-2x+3=(x-1)2+2.(1)当0<a<1时,函数f(x)=(x-1)2+2在[0,a]上递减,故最大值为f(0)=3,最小值为f(a)=a2-2a+3=(a-1)2+2>2.所以0<a<1不合题意.(2)当a≥1时,函数f(x)=(x-1)2+2在[0,1]上递减,在[1,a]上递增,故最小值为f(1)=2.又因为f(0)=3,所以f(0)≥f(a).此时,函数f(x)=x2-2x+3在[0,a]上的最大值为3,最小值为2.综上所述,a的取值范围是1≤a≤2.专题一专题二专题三变式训练2已知函数f(x)=x2-2x+311专题一专题二专题三专题三
函数的奇偶性的应用例3若奇函数y=f(x)是定义在[-1,1]上的减函数,且f(1-a)+f(1-a2)>0,求a的取值范围.解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),又因为f(x)是定义在[-1,1]上的减函数,方法技巧
利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.专题一专题二专题三专题三函数的奇偶性的应用12专题一专题二专题三变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.解:法一:∀x1,x2∈(0,+∞),且x1<x2,则-x1>-x2,因为f(x)在区间(-∞,0)上是增函数,所以f(-x1)>f(-x2).又因为f(x)是偶函数,得f(x1)>f(x2),所以f(x)在(0,+∞)上是减函数,所以2a2+a+1和3a2-2a+1是两个正数,所以f(2a2+a+1)<f(3a2-2a+1)等价于2a2+a+1>3a2-2a+1,解得0<a<3.专题一专题二专题三变式训练3若f(x)是定义在实数集R上的偶13专题一专题二专题三法二:同法一,判断出2a2+a+1和3a2-2a+1是两个正数,则有-(2a2+a+1)<0和-(3a2-2a+1)<0.由偶函数性质,f(2a2+a+1)<f(3a2-2a+1)等价于f[-(2a2+a+1)]<f[-(3a2-2a+1)],又f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年北京市丰台区高二生物上册期中考试试卷及答案
- 篮网火箭达成协议书
- 慢性阻塞性肺病症状解析及呼吸训练培训
- 财务行业新员工培训
- 奔向长青- 碳中和及可持续发展高管洞察 2023
- 2025版眼科常见疾病症状及护理策略
- 如何让员工按标准化作业
- 施工员工种实训
- 完美训练法则讲解
- 数学教育教学反思报告
- 烧伤病人护理(查房)
- DL∕T 5161.14-2018 电气装置安装工程质量检验及评定规程 第14部分:起重机电气装置施工质量检验
- DZ∕T 0270-2014 地下水监测井建设规范
- DL-T5153-2014火力发电厂厂用电设计技术规程
- (高清版)JTGT 3365-02-2020 公路涵洞设计规范
- 八年级物理单位换算专项练习
- 压力容器制造质量保证手册
- 国家职业技术技能标准 6-12-03-00 药物制剂工 人社厅发201957号
- 医养结合知识培训课件
- 培训人才发展体系搭建
- 【工程测量实用技术实践实验报告:水准测量1600字】
评论
0/150
提交评论