




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市延安中学2013学年度第一学期期末考试高二年级数学试卷(考试时间:90分钟 满分:100分)班级______________姓名______________学号________________成绩______________一、填空题(每题3分,共42分)1、方程组的增广矩阵为___________.2、抛物线的准线方程是___________.3、过点和点的直线的倾斜角为___________.4、执行右边的程序框图,输入,则输出的值是___________.5、已知点和,点满足,则点的轨迹方程是___________.6、已知直线过点,则行列式的值为___________.7、若方程表示焦点在轴上的椭圆,则实数的取值范围是___________.8、已知直线平行于直线,则实数=___________.9、直线与圆相交于,两点,若,则的取值范围是___________.10、若曲线与直线有两个不同的公共点,则实数的取值范围是___________.11、点是抛物线上的动点,点的坐标为,则的最小值为___________.12、一条光线从点射到直线后,在反射到另一点,则反射光线所在的直线方程是___________.13、记直线与坐标轴所围成的直角三角形面积为,则=___________.14、已知为椭圆上的任意一点,为椭圆的右焦点,点的坐标为,则的最小值为___________.二、选择题(每题4分,共16分)15、已知点和点,动点满足,则点的轨迹方程是()
(A); (B)
(C); (D).16、已知直线与直线,“”是“的方向向量是的法向量”的()
(A)充分非必要条件; (B)必要非充分条件;
(C)充要条件; (D)既非充分又非必要条件.17、直线与双曲线的渐近线交于、两点,设为双曲线上的任意一点,若(,为坐标原点),则、满足的关系是()
(A); (B); (C); (D).18、如图,函数的图像是双曲线,下列关于该双曲线的性质的描述中正确的个数是()
=1\*GB3①渐近线方程是和;
=2\*GB3②对称轴所在的直线方程为和;
=3\*GB3③实轴长和虚轴长之比为;
=4\*GB3④其共轭双曲线的方程为.
(A)1个; (B)2个; (C)3 个; (D)4个.三、简答题(共42分)19、(本题6分)已知双曲线与椭圆焦点相同,且其一条渐近线方程为,求该双曲线方程.20、(本题7分)已知曲线在轴右侧,上每一点到点的距离减去它到轴距离的差都等于1,求曲线的方程.21、(本题7分)已知直线,求关于直线的对称的直线的方程.22、(本题10分,第1小题3分,第2小题7分)
如图,抛物线的方程为.(1)当时,求该抛物线上纵坐标为2的点到其焦点的距离;(2)已知该抛物线上一点的纵坐标为,过作两条直线分别交抛物线与、,当与的斜率存在且倾斜角互补时,求证:为定值;并用常数、表示直线的斜率.23、(本题12分,第1小题4分,第2小题8分)
如图,已知椭圆的方程为,且长轴长与焦距之比为,圆的圆心在原点,且经过椭圆的短轴顶点.(1)求椭圆和圆的方程;
(2)是否存在同时满足下列条件的直线:=1\*GB3①与圆相切与点(位于第一象限);=2\*GB3②与椭圆相交于、两点,使得.若存在,求出此直线方程,若不存在,请说明理由.上海市延安中学2013学年度第一学期期末考试高二年级数学试卷(考试时间:90分钟 满分:100分)班级______________姓名______________学号________________成绩______________一、填空题(每题3分,共42分)1、方程组的增广矩阵为___________.2、抛物线的准线方程是___________.3、过点和点的直线的倾斜角为____.4、执行右边的程序框图,输入,则输出的值是_____70_____.5、已知点和,点满足,则点的轨迹方程是___________.6、已知直线过点,则行列式的值为_____0_____.7、若方程表示焦点在轴上的椭圆,则实数的取值范围是_____.8、已知直线平行于直线,则实数=_____2____.9、直线与圆相交于,两点,若,则的取值范围是___________.10、若曲线与直线有两个不同的公共点,则实数的取值范围是___________.11、点是抛物线上的动点,点的坐标为,则的最小值为_______.12、一条光线从点射到直线后,在反射到另一点,则反射光线所在的直线方程是___________.13、记直线与坐标轴所围成的直角三角形面积为,则=___________.14、已知为椭圆上的任意一点,为椭圆的右焦点,点的坐标为,则的最小值为______5_____.二、选择题(每题4分,共16分)15、已知点和点,动点满足,则点的轨迹方程是(B)
(A); (B)
(C); (D).16、已知直线与直线,“”是“的方向向量是的法向量”的(A)
(A)充分非必要条件; (B)必要非充分条件;
(C)充要条件; (D)既非充分又非必要条件.17、直线与双曲线的渐近线交于、两点,设为双曲线上的任意一点,若(,为坐标原点),则、满足的关系是(B)
(A); (B); (C); (D).18、如图,函数的图像是双曲线,下列关于该双曲线的性质的描述中正确的个数是(D)
=1\*GB3①渐近线方程是和;
=2\*GB3②对称轴所在的直线方程为和;
=3\*GB3③实轴长和虚轴长之比为;
=4\*GB3④其共轭双曲线的方程为.
(A)1个; (B)2个; (C)3 个; (D)4个.三、简答题(共42分)19、(本题6分)已知双曲线与椭圆焦点相同,且其一条渐近线方程为,求该双曲线方程.由已知可设双曲线方程为,由于双曲线与椭圆焦点相同,故.将其化为标准方程,则有,解得,故双曲线方程为.20、(本题7分)已知曲线在轴右侧,上每一点到点的距离减去它到轴距离的差都等于1,求曲线的方程.设曲线上任意一点,则有题意可得,整理得.又曲线在轴右侧,故,从而曲线的方程为.21、(本题7分)已知直线,求关于直线的对称的直线的方程.由已知可求得直线与直线的交点为,故设直线的方程为由夹角公式可得,解得从而直线的方程为,即22、(本题10分,第1小题3分,第2小题7分)
如图,抛物线的方程为.(1)当时,求该抛物线上纵坐标为2的点到其焦点的距离;(2)已知该抛物线上一点的纵坐标为,过作两条直线分别交抛物线与、,当与的斜率存在且倾斜角互补时,求证:为定值;并用常数、表示直线的斜率.(1)当时,,代入,解得.
则由抛物线定义可知:该点到焦点的距离即为其到准线的距离,为.(2)设,由题意,即,
由于、在抛物线上,故上式可化为
从而有,即为定值.
直线的斜率.23、(本题12分,第1小题4分,第2小题8分)
如图,已知椭圆的方程为,且长轴长与焦距之比为,圆的圆心在原点,且经过椭圆的短轴顶点.(1)求椭圆和圆的方程;
(2)是否存在同时满足下列条件的直线:=1\*GB3①与圆相切与点(位于第一象限);=2\*GB3②与椭圆相交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享加盟合同范例
- 全屋家具合同范例
- 公司租赁库房合同范例
- 代理股东合同范例
- 免税酒水收购合同范例
- 借用合同与买卖合同范例
- 伙食采购合同范例
- 乐队授课服务合同范例
- 兰州市二手房过户合同范例
- 养殖区域合同样本
- 《excel数据分析》课件
- DB1310-T 223-2020 小麦节水绿色丰产栽培技术规程
- 小学六年级科学(人教版)《各种各样的自然资源》-教学设计、课后练习、学习任务单
- 215kWh工商业液冷储能电池一体柜用户手册
- 燃气安全事故处理及应急
- 汽车发动机构造与维修课件 第六章 燃油供给系
- 可再生能源预测技术研究
- 2024-2030年中国耐火材料行业供需分析及发展前景研究报告
- 部门级安全培训考试题附答案【考试直接用】
- 物业五级三类服务统一标准
- 见证取样手册(给排水管道工程分部)
评论
0/150
提交评论